期刊文献+

加成型液体氟硅橡胶等温固化的分析与模拟 被引量:1

Analysis and Simulation of Isothermal Curing for Additive Liquid Fluorosilicone Rubber
下载PDF
导出
摘要 通过旋转流变仪对环状含氢氟硅油(D_F^H)和四甲基四乙烯基环四硅氧烷(D_4^(Vi))发生硅氢加成反应得到的加成型液体氟硅橡胶的固化过程流变学进行了研究。研究了不同等温固化温度对该体系固化反应过程的影响,并得到了体系固化反应的凝胶点为α=0.63。讨论了体系的固化反应模型,确定了Kamal自催化模型适用于体系的固化反应,得到了相关的模型参数及Kamal自催化模型方程。Kamal自催化模型方程对加成型液体氟硅橡胶的固化过程有重要的指导意义。 In this paper, the rheology of curing process for the additive liquid fluorosilicone rubber, which was synthesized by the hydrosilylation reaction of cyclic hydrofluorosiliconoil(DFH) and 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane(D4Vi) was studied. The effects of different isothermal curing temperatures on the curing process of the system were investigated, the gel point(α=0.63) of the curing reaction was obtained. The curing reaction model of the system was discussed, and the Kamal autocatalytic model applied to the curing reaction of the system was determined. The related model parameters and the Kamal autocatalytic model equation were acquired. The Kamal autocatalytic model equation is of great guiding significance for the curing process of the additive liquid fluorosilicone rubber.
作者 陈贤宏 李纯清 余鹏 付志忠 陈绪煌 Xianhong Chen;Chunqing Li;Peng Yu;Zhizhong Fu;Xuhuang Chen(Hubei Provincial Key Laboratory of Green Materials for Light Industry 9 Hubei University of Technology,Wuhan 430068,China)
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2019年第3期108-113,共6页 Polymer Materials Science & Engineering
基金 绿色轻工材料湖北省重点实验室开放基金(2013CLZD04)
关键词 加成型液体氟硅橡胶 Kamal自催化模型 等温固化 additive liquid fluorosilicone rubber Kamal autocatalytic model isothermal curing
  • 相关文献

参考文献2

二级参考文献28

  • 1张秀艳,杨志忠,王春雨.树脂膜渗透(RFI)成型工艺及其应用[J].纤维复合材料,2004,21(2):39-41. 被引量:17
  • 2郭战胜,杜善义,张博明,武湛君,李方,傅求理.先进复合材料用环氧树脂的固化反应和化学流变[J].复合材料学报,2004,21(4):146-151. 被引量:57
  • 3刘天舒,张宝艳,陈祥宝.3234中温固化环氧树脂体系的固化反应动力学研究[J].航空材料学报,2005,25(1):45-47. 被引量:24
  • 4李燕芳,赵洪池,高俊刚,苏晓辉.双酚-S环氧树脂与间苯二胺固化反应动力学[J].热固性树脂,2005,20(3):5-8. 被引量:8
  • 5Qi B, Raju J, Kruckenberg T, Stanning R. A resin film infusion process for manufacture of advanced composite structures [J]. Composite Structures, 1999, 47(1/4): 471- 476.
  • 6Hinrichsen J, Bautista C. The challenge of reducing both airframe weight and manufacturing cost [ J ]. Aircraft Technologies Structures: Air & Space Europe, 2001, 3 (3) : 134-140.
  • 7Skordos A A, Partridge I K. Cure kinetics modeling of epoxy resins using a non- parametric numerical procedure [J]. Polymer Engineering and Science, 2001, 41(5): 793-805.
  • 8Karkanas P I, Partridge I K. Cure modeling and monitoring of epoxy/amine resin systems I : Cure kinetics modeling [J]. Journal of Applied Polymer Science, 2000, 77(7): 1419- 1431.
  • 9Schawe J E K. A description of chemical and diffusion control in isothermal kinetics of cure kinetics [J]. Thermochimica Acta, 2002, 388(1/2): 299-312.
  • 10Prime R B, Tuci E A. Thermal characterization of polymeric materials [M]. New York: Academic Press, 1981: 655-663.

共引文献57

同被引文献563

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部