期刊文献+

广义一维势中热声制冷微循环的性能分析 被引量:4

Performance analysis for quantum thermoacoustic refrigeration micro-cycle working in generalized 1D potential
下载PDF
导出
摘要 从工质粒子在不同声波势场条件下的量子力学行为入手,建立一套适用于各种一维势场条件的广义量子热声制冷微循环分析模型并推导出广义量子热声制冷微循环的性能参数表达式。以几个典型的一维势场为例,计算分析工质粒子在不同势场中运动时的循环性能。通过比较,确定当工质粒子工作于一维无限深势阱或谐振势阱条件下时,循环的性能系数和制冷率的综合性能比其他势场条件时的优。研究结果表明:要使热声制冷机性能达到最优,必须对声场进行控制,使其能够在回热器中建立起一维无限深势阱或谐振势阱。 A set of analysis model for generalized quantum thermoacoustic refrigeration micro-cycle working in various 1D potential wells was established started with the quantum mechanical behavior of working medium particles under different acoustic potential field conditions.And the performance parameter expressions of the generalized quantum thermoacoustic refrigeration micro-cycle were derived.Taking several typical 1D potentials as examples,the cyclic properties of working medium particles moving in different potential fields were calculated and analyzed.By comparison,it was show that when particle works in 1D infinite deep potential well or resonance potential well,the comprehensive performance of micro-cycle was better than that of other potential well conditions.The results show that,to achieve the optimal performance of the thermoacoustic refrigerator,the sound field must be controlled so that it can establish a 1D infinite deep potential well or resonant potential well in the regenerator.
作者 鄂青 吴锋 E Qing;WU Feng(School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of Science,Wuhan Institute of Technology,Wuhan 430205,China;Institute of Thermal Science and Power Engineering,Naval University of Engineering,Wuhan 430032,China)
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第3期726-733,共8页 Journal of Central South University:Science and Technology
基金 湖北省教育厅科学研究基金资助项目(Q20141506) 武汉工程大学教学研究基金资助项目(X2016036)~~
关键词 有限时间热力学 广义一维势 量子热声制冷机微循环 量子热力学 finite time thermodynamics generalized potential well quantum thermoacoustic refrigeration cycle quantum thermodynamics
  • 相关文献

参考文献4

二级参考文献30

  • 1Back S, Swift G W. A Thermoacoustic Stirling Wave Heat Engine[J ]. Nature, 1999,399:335-338.
  • 2Zhou G, Li Q, Li Z Y, et al. A Miniature Thermoacoustic Stirling Engine [J]. Energy Conversion and Management, 2008, 49(6) : 1785-1792.
  • 3Bejan A. Entropy Generation Minimization[J]. J Appl, Phys, 1996,79(3) : 1191-1218.
  • 4Chen L, Sun F. Advances in Finite Time Thermodynamics: Analysis and Optimization [M]. New York: Nova Science Publishers, 2004.
  • 5GEVA E. Finite time thermodynamics for quantum heatengine and heat pump[D]. Israel: The Hebrew University, 1995.
  • 6SISMAN A, SAYGIN H. On the power cycles working with ideal quantum gases: I. The Erriction cycle[J]. Journal of Physics D: Applied Physics, 1999, 32(3): 664-680.
  • 7SISMAN A, SAYGIN H. Efficiency analysis of a Stirling power cycle under quantum degeneracy conditions[J]. Physica Scripta, 2001, 63(3): 263-267.
  • 8KOSLOFF R. A quantum mechanical open system as a model of a heat engine[J]. The Journal of Chemical Physics, 1984, 80(4): 1625-1631.
  • 9GEVA E, KOSLOFF R. On the classical limit of quantum thermodynamics in finite time[J]. The Journal of Chemical Physics, 1992, 97(6): 4398-4412.
  • 10WU F, CHEN L, SUN F, et al. Finite-time exergoeconomic performance bound for a quantum Stirling engine[J]. International Journal of Engineering Science, 2000, 38(2): 239-247.

共引文献38

同被引文献29

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部