期刊文献+

城市空气污染数据统计分析及治理措施研究 被引量:2

Statistical Analysis of Urban Air Pollution Data and Research on Treatment Measures
下载PDF
导出
摘要 城市空气污染数据具有统计特性,根据统计结果可以实现对空气污染数据的有效预测,提出一种基于支持向量机学习的城市空气污染数据预测方法。采用多维传感器进行城市空气污染数据采集,采用决策数据高维映射重构模型对多传感器采样的城市空气污染数据先验特征进行信息重排,采用闭频繁项集挖掘方法提取城市空气污染数据的统计特征量,采用量化回归分析方法进行大数据的主特征分析,将量化回归分析结果输入到支持向量机预测器中,结合灰度学习进行污染数据的有效预测和加权控制,提高数据预测的自适应性,实现城市空气污染数据优化预测。 Urban air pollution data have statistical characteristics. Based on the statistical results, an effective prediction method of urban air pollution data based on support vector machine learning is proposed. The multi-dimensional sensor is used to collect urban air pollution data, and the decision data high-dimensional mapping reconstruction model is used to rearrange the priori characteristics of multi-sensor sampling urban air pollution data. The closed frequent item set mining method is used to extract the statistical features of urban air pollution data, and the quantitative regression analysis method is used to analyze big data s main features. The results of quantitative regression analysis are input into the support vector machine(SVM)predictor. In order to improve the self-adaptability of data prediction, the optimal prediction of urban air pollution data can be realized by combining gray learning with effective prediction and weighted control of pollution data.
作者 刘婷 Liu Ting(LONGi Solar Technology Co., Ltd, Marketing department, Xi an 710000, China)
出处 《环境科学与管理》 CAS 2019年第3期50-53,共4页 Environmental Science and Management
关键词 城市空气污染 数据 预测 治理措施 统计分析 urban air pollution data prediction control measures statistical analysis
  • 相关文献

参考文献9

二级参考文献48

  • 1周亮进,由文辉.闽江河口湿地景观格局动态及其驱动力[J].华东师范大学学报(自然科学版),2007(6):77-87. 被引量:10
  • 2焦东雨.被烟雾笼罩的真相[J]中国周刊,2013(04).
  • 3谢佳沥.经济手段将挑治霾大梁[N].中国环境报.2014(001)
  • 4He Hai-bo ,Edwardo A Garcia. Learning from imbalanced data[ J]. IEEE Transactions on Knowledge and Data Engineering, 2009,21 (9) :1263-1284.
  • 5Yao Pei, Wang Zhong-sheng, Jiang Hong-kai, et al. Fault diagnosis method based on cs-boosting for unbalanced training data[ J ]. Journal of Vibration, Measurement & Diagnosis,2013,33 ( 1 ) : 111-115.
  • 6Powers David Martin. Evaluation: from precision, recall and Fmeasure to ROC, informedness, markedness and correlation [ J ]. Journal of Machine Learning Technologies ,2011,2 ( 1 ) :37-63.
  • 7Shao Kuoyi, Zhai Yun, Sui Hai-feng et al. A new over-sample method based on distribution density [ J ]. Journal of Computers, 2014,9(2) :483-490.
  • 8Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, et al. Smote: synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research,2002,16( 1 ) :321-357.
  • 9Claudia Galarda Varassin, Alexandre Plastino, Helena Cristina Da Gama Leitao, et al. Undersampling strategy based on clustering to improve the performance of splice site classification in human genes in database and expert systems applications[ C]. 24th IEEE Interna- tional Workshop on DEXA,2013:85-89.
  • 10Mahesh V Joshi, Ramesh C Agarwal,Vipin Kumar. Mining needles in a haystack:classifying rare classes via two-phase rule induction [ C ]. Proceedings of the ACM SIGMOD International Conference on Management of Data,2001:91-102.

共引文献58

同被引文献18

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部