期刊文献+

基于改进粒子群算法的核函数参数优化 被引量:2

Optimization of kernel function parameters based on improved particle swarm optimization
原文传递
导出
摘要 针对核主元分析(Kernel Principal Component Analysis, KPCA)的性能极大地受到本身核函数参数影响问题,提出一种新型的聚类KPCA-FDA-IPSO核参数优化方法。该方法结合KPCA特征分析的相关方法,综合考虑样本的类内离散度和类间距离,并通过Fisher判别分析(Fisher Discriminant Analysis, FDA)建立的数学模型,再将传统粒子群优化算法(Particle Swarm Optimization, PSO)改进为具有继承机制的粒子群优化算法(Inheritance PSO,IPSO),并对核函数寻优。通过数据集仿真和应用研究,验证了该方法能有效地优化核函数参数并提高了KPCA的故障诊断性能。 The performance of kernel principal component analysis(KPCA) was greatly influenced by the parameters of its own kernel function,a new KPCA-FDA-IPSO kernel parameter optimization method with series clustering was proposed. In considering sample within the class of discrete degree and the distance between the classes,the method was combined with the related methods of KPCA feature analysis,and the mathematical model was established by fisher discriminant analysis(FDA). Then the traditional particle swarm optimization(PSO) algorithm was improved to the inheritance PSO(IPSO) optimization algorithm,and kernel function of KPCA was optimized by IPSO. Through the simulation and application research,it is proved that the proposed method can effectively optimize the kernel function parameters of KPCA and improve the fault diagnosis performance of KPCA.
作者 肖应旺 姚美银 刘军 张绪红 陈贞丰 XIAO Yingwang;YAO Meiying;LIU Jun;ZHANG Xuhong;CHEN Zhenfeng(School of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, Guangdong, China;Equipment and Laboratory Management Office, Guangdong Polytechnic Normal University, Guangzhou 510665, Guangdong, China)
出处 《计算机与应用化学》 CAS 北大核心 2018年第10期855-865,共11页 Computers and Applied Chemistry
基金 广东省自然科学基金资助项目(2017A030313364)
关键词 核主元分析法 FISHER判别分析 粒子群优化:核参数优化 kernel principal component analysis fisher discriminant analysis particle swarm optimization kernel parameter optimization
  • 相关文献

参考文献1

二级参考文献10

  • 1Dunia R, Qin S J. A unified geometric approach to process and sensor fault identification and reconstruction: the unidimensional fault case. Computers Chern Eng, 1998,22:927-943.
  • 2Ricardo D, Qin S J. Joint diagnosis of process and sensor faults using principal component analysis. Control Engineering Practice, 2007,6:457-469.
  • 3Fuat D, Romagnoli J A.and Palazoglu A. A strategy for detection and isolation of sensor failures and process upsets. Chemometrics and Intelligent Laboratory Systems, 2001, 55:109-123.
  • 4Leo H C, Braatz R D. Process monitoring using causal map and multivariate statistics: fault detection and identification. Chemometrics and Intelligent Laboratory Systems, 2003, 65: 159-178.
  • 5Wang Haiqing, Song Zhihuan and Li Ping. Improved PCA with optimized sensor locations for process monitoring and fault diagnosis. Proceedings of the 39th IEEE Conference on Decision and Control, 2000, Sydney, Australia. 4353-4358.
  • 6Vue H H, Qin S 1. Reconstruction-based fault identification using a combined index. Ind Eng Chern Res, 2001, 40: 4403-4414.
  • 7Wang Yicheng. Dynamic Model of Process. Hangzhou: Zhe Jiang University Press, 1994:40-88.
  • 8ChangKyu Lee, Sang Wook Choi and In-Beum Lee. Sensor fault identification based on time-lagged PCA in dynamic processes. Chemometrics and Intelligent Laboratory Systems, 2004, 70: 165-178.
  • 9Bin Shams M A, Budman H M and Duever T A. Fault detection, identification and diagnosis using CUSUM based PCA. Chemical Engineering Science, 2011, 66(20):4488-4498.
  • 10Zhang Yingwei, Li Shuai and Teng Yongdong. Dynamic processes monitoring using recursive kernel principal component analysis. Chemical Engineering Science, 2012, 72(1):78-86.

共引文献2

同被引文献23

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部