期刊文献+

Theoretical study on the oscillation mechanism of p53-Mdm2 network

原文传递
导出
摘要 In this paper, a delayed mathematical model was developed based on experimental data to understand how the time delays required for transcription and translation in Mdm2 gene expression affect the kinetic behavior of the p53-Mdm2 network. Taking the time delays as the main research parameters, tlie stability of the system at the positive equilibrium waa studied by using the theoretical method of delay differential equation. We found that such delays can induce oscillations by undergoing a supercritical Hopf bifurcation. Then, we used the normal form theory and the center manifold reduction to study the direction and stability of the bifurcation in detail. Furthermore, we also studied the effects of the length of time delays and the model parameters by numerical simulations. We found that time delays in Mdni2 synthesis are required for p53 oscillations and the length of such delays can determine the amplitude and period of the oscillations. In addition, the model parameters can also change the stability of the system. These results illustrate that the repair process after DNA damage can be regulated by varying time delays and the model parameters.
出处 《International Journal of Biomathematics》 SCIE 2018年第8期327-348,共22页 生物数学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部