期刊文献+

Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction 被引量:10

Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction
下载PDF
导出
摘要 After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation. After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第6期571-588,共18页 大气科学进展(英文版)
基金 supported by the NOAA (Grant Nos. NA16AOR4320115 and NA11OAR4320072) NSF (Grant No. AGS-1341878)
关键词 WEATHER RADAR POLARIMETRY RADAR METEOROLOGY numerical WEATHER prediction data ASSIMILATION MICROPHYSICS parameterization forward operator weather radar polarimetry radar meteorology numerical weather prediction data assimilation microphysics parameterization forward operator
  • 相关文献

同被引文献185

引证文献10

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部