期刊文献+

用于阿尔茨海默病诊断的权值分布特征学习 被引量:3

Feature Learning of Weight-distribution for Diagnosis of Alzheimer's Disease
下载PDF
导出
摘要 针对当前基于机器学习的早期阿尔茨海默病(AD)诊断中有标记训练样本不足的问题,提出一种基于多模态特征数据的权值分布稀疏特征学习方法,并将其应用于早期阿尔茨海默病的诊断.具体来说,该诊断方法主要包括两大模块:基于权值分布的Lasso特征选择模型(WDL)和大间隔分布分类机模型(LDM).首先,为了获取多模态特征之间的数据分布信息,对传统Lasso模型进行改进,引入权值分布正则化项,从而构建出基于权值分布的Lasso特征选择模型;然后,为了有效地利用多模态特征之间的数据分布信息,以保持多模态特征之间的互补性,直接采用大间隔分布学习算法训练分类器.选取国际阿尔茨海默症数据库(ADNI)中202个多模态特征的被试者样本进行实验,分类AD最高平均精度为97.5%,分类轻度认知功能障碍(MCI)最高平均精度为83.1%,分类轻度认知功能障碍转化为AD(p MCI)最高平均精度为84.8%.实验结果表明,所提WDL特征学习方法可从串联的多模态特征学到性能更优的特征子集,并能根据权值分布获取多模态特征之间的数据分布信息,从而提高早期阿尔茨海默病诊断的性能. In the field of medical imaging analysis using machine learning, the challenge is lack of training sample. In order to solve the problem, a weight-distribution based Lasso (Least absolute shrinkage and selection operator) feature learning model is proposed and applied to early diagnosis of Alzheimer’s Disease (AD). Specifically, the proposed diagnosis method is consisted of two components: weight-distribution based Lasso feature selection (WDL) and large margin distribution machine (LDM) for classification. Firstly, in order to capture data distribution information among multimodal features, the WDL feature selection model was built, to improve on the conventional Lasso model via adding a regularization item of weight-distribution. Secondly, in order to achieve better generalization and accuracy on classification, and also to keep complementary information among multimodal features, the LDM algorithm is used for the training of the classifier. To evaluate the effectiveness of the proposed learning model, 202 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with multimodal features were employed. Experimental results on the ADNI database show that it can recognize AD from Normal Controls (NC) with 97.5% accuracy, recognize Mild Cognitive Impairment (MCI) from NC with 83.1% accuracy, and recognize progressive MCI (pMCI) patients from stable MCI (sMCI) ones with 84.8% accuracy, which demonstrate that it can significantly improve the performance of early AD diagnosis and achieve feature ranking in terms of discrimination via optimized weight vector.
作者 程波 丁毅 张道强 CHENG Bo;DING Yi;ZHANG Dao-Qiang(Key Laboratory of Intelligent Information Processing and Control of Chongqing Municipal Institutions of Higher Education, Chongqing Three Gorges University, Chongqing 404020, China;College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
出处 《软件学报》 EI CSCD 北大核心 2019年第4期1002-1014,共13页 Journal of Software
基金 国家自然科学基金(61602072 61422204 61473149 61732006 61573023) 重庆市基础研究与前沿探索项目(cstc2016jcyjA0063 cstc2018jcyjAX0502 cstc2014jcyjA40035 cstc2014jcyjA1316 cstc2016jcyjA0521) 重庆市教委科学技术研究(KJ1501014 KJ1601003 KJ1710248 KJ1401010 KJ1601015) 重庆市高校市级重点实验室资助项目([2017]3)~~
关键词 权值分布 多模态 阿尔茨海默病 稀疏特征学习 大间隔分布学习 weight-distribution multimodal Alzheimer’s disease (AD) sparse feature learning large margin distribution learning
  • 相关文献

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部