期刊文献+

基于深度学习的四旋翼无人机单目视觉避障方法 被引量:12

Monocular vision obstacle avoidance method for quadcopter based on deep learning
下载PDF
导出
摘要 针对无人机避障问题,提出一种基于深度学习的四旋翼无人机单目视觉避障方法。首先通过目标检测框选出目标在图像中的位置,并通过计算目标选框上下边距的长度,以此来估量出障碍物到无人机之间的距离;然后通过协同计算机判断是否执行避障动作;最后使用基于Pixhawk搭建的飞行实验平台进行实验。实验结果表明,该方法可用于无人机低速飞行条件下避障。该方法所用到的传感器只有一块单目摄像头,而且相对于传统的主动式传感器避障方法,所占用无人机的体积大幅减小。该方法鲁棒性较好,能够准确识别不同姿态的人,实现对人避障。 A monocular vision obstacle avoidance method for quadrotor based on deep learning was proposed to help quadrotors to avoid obstacles.Firstly,the position of object in the image was obtained by object detection,and by calculating the height of the object box in the image,the distance between quadcopter and obstacle was estimated.Then,whether performing obstacle avoidance was determined by synergetic computer.Finally,experiments were conducted on a flight test platform based on Pixhawk flight control board.The results show that the proposed method can be applied to quadcoptor obstacle avoidance with low speed.Compared with traditional active sensor methods,the proposed method greatly reduces the occupied volume with only one monocular camera as sensor.This method is robust and can identify people with different postures as obstacles.
作者 张午阳 章伟 宋芳 龙林 ZHANG Wuyang;ZHANG Wei;SONG Fang;LONG Lin(Laboratory of Intelligent Control and Robotics,Shanghai University of Engineering Science,Shanghai 201620,China;College of Mechanical and Automobile Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《计算机应用》 CSCD 北大核心 2019年第4期1001-1005,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(51505273)~~
关键词 深度学习 目标检测 单目视觉 无人机避障 deep learning object detection monocular vision quadcopter obstacle avoidance
  • 相关文献

参考文献5

二级参考文献59

  • 1游素亚.立体视觉研究的现状与进展[J].中国图象图形学报(A辑),1997,2(1):17-24. 被引量:102
  • 2Shakemia O, Vidal R, Sharp C S, et al. Multiple view motion estimation and control for landing an unmanned aerial vehicle[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 2793-2798.
  • 3Sharp C S, Shakemia O, Sastry S S. A vision system for landing an unmanned aerial vehicle[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2001: 1720-1727.
  • 4Sasa S, Gobi H, Nonomiya T, et al. Position and attitude estimation using image proceeding of runway[C]//Proceedings of 38th Aerospace Sciences Meeting and Exhibition. Reston, VA, USA: AIAA, 2000: 1-10.
  • 5Miller A, Shah M, Harper D. Landing a UAV on a runway using image registration[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2008: 182-187.
  • 6Martinez C, Mondragon I F, Olivares-Mendez M A, et al. Onboard and ground visual pose estimation techniques for UAV control[J]. Journal of Intelligent and Robotic Systems, 2011, 61(1-4): 301-320.
  • 7Kim J, Sukkarieh S. Real-time implementation of airborne inertial-SLAM[J]. Robotics and Autonomous Systems, 2007, 55(1): 62-71.
  • 8Aouf N, Sazdovski V, Tsourdos A, et al. Low altitude airborne SLAM with INS aided vision system[C]//Proceedings of AIAA Guidance, Navigation and Control Conference. Reston, VA, USA: AIAA, 2007.
  • 9Stinderhauf N, Lange S, Protzel P. Using the unscented Kalman filter in mono-SLAM with inverse depth parameterization for autonomous airship control[C]//IEEE International Workshop on Safety, Security and Rescue Robotics. Piscataway, NJ, USA: IEEE, 2007: 1-6.
  • 10Colombatti G, Aboudan A, La Gloria N, et al. Lighter-than-air UAV with SLAM capabilities for mapping applications and at- mosphere analyses[J]. Memorie della Societa Astronomica Italiana Supplement, 2011, 16: 42-49.

共引文献86

同被引文献141

引证文献12

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部