期刊文献+

一种基于白芍饮片溯源的RFID动态多标签数据清洗改进算法 被引量:2

An Improved RFID Dynamic Multi-Tag Data Cleaning Algorithm Based on Traceability of Radix Paeoniae Alba
下载PDF
导出
摘要 针对白芍饮片溯源系统的需求,通过分析比较SNM算法、SMURF算法、DSMURF算法,剔除不适合的SNM算法。利用SMURF算法中数据完整性条件和DSMURF算法中改进的多标签数据动态性条件,设计了适用于白芍饮片溯源系统中多标签数据清洗工作的MDSMURF算法。并通过仿真实验对于MDSMURF算法的多标签动态数据读取的阅读率和冗余数据的清洗效果进行验证。结果证明:改进后的MDSMURF算法提高了多标签动态的阅读效率、冗余数据的清洗效果。 According to the requirement of the traceability system of Radix Paeoniae Alba, the unsuitable SNM algorithm is eliminated by analyzing and comparing the SNM algorithm, SMURF algorithm and DSMURF algorithm. Based on the data integrity condition of SMURF algorithm and the improved dynamic condition of multi-Tag data in DSMURF algorithm, an MDSMURF algorithm for multi-Tag data cleaning in the traceability system of Radix Paeoniae Alba was designed. The reading rate of multi-Tag dynamic data reading and the cleaning effect of redundant data are verified by simulation experiments. The results show that the improved MDSMURF algorithm improves the dynamic reading efficiency of multi-Tag and the cleaning effect of redundant data.
作者 圣光磊 Sheng Guang-lei(Department of Electronic and Information Engineering, Bozhou University, Anhui Bozhou 236800 , China)
出处 《贵阳学院学报(自然科学版)》 2019年第1期75-79,共5页 Journal of Guiyang University:Natural Sciences
基金 2017年度安徽省教育厅科研基金重点项目:"亳州白芍中药饮片质量溯源物联网系统的研究和设计"(项目编号KJ2017A708)阶段性成果 2018年度安徽省教育厅科研基金重点项目:"基于智能控制与图像识别及检测的白芍种植监控系统研究与应用"(项目编号KJ2018A0821)阶段性成果 亳州学院自然科学研究项目:亳州白芍中药饮片质量溯源物联网系统的研究和设计"(项目编号BSKY201536)阶段性成果 亳州学院自然科学研究重点项目:"基于移动学习的响应式在线测试系统的研究"(项目编号BYZ2017B04)阶段性成果
关键词 SMURF算法 动态多标签 RFID数据清洗 改进算法 SMURF algorithm Dynamic tags RFID data cleaning Improved algorithm
  • 相关文献

参考文献6

二级参考文献44

  • 1中国高等教育文献保障系统管理中心.中国高等教育数字图书馆技术标准与规范[M].北京:中国高等教育文献保障系统,2004:312-315.
  • 2Rahm E,Do H H.Data cleaning:Problems and current approaches[J].IEEE Data Engineering Bulletin,2000,23(4):3-13.
  • 3Raman V,Hellerstein J M.Potter's Wheel:An interactive data cleaning system[C] //Proceedings of the 27th VLDB Conference.San Francisco:Morgan Kaufmann Publishers Inc,2001:100-109.
  • 4Bitton D,DeWitt D J.Duplicate record elimination in large data files[J].ACM Transactions on Database Systems,1983,8(2):255-265.
  • 5Hernandez M A,Stolfo S J.Real-world data is dirty:data cleansing and the merge/purge problem[J].Journal of Data Mining and Knowledge Discovery,1998,2(1):9-37.
  • 6Hernandez M A,Stolfo S J.Real-World data is dirty:Data cleansing and the merge/purge problem[J].Data Mining and Knowledge Discovery,1998,2(1):9-37.
  • 7Monge A E.Matching algorithm within a duplicate detection system[J].IEEE Data Engineering Bulletin,2000,23(4):14-20.
  • 8Monge A E,Elkan C P.An efficient domain-independent algorithm for detecting approximately duplicate database records[C] //Proceeding of the ACM-SIGMOD Workshop on Data Mining and Knowledge Discovery.Tucson:ACM,1997:23-29.
  • 9Kukich K.Techniques for automatically correcting words in text[J].ACM Computing Surveys,1992,24(4):377-439.
  • 10Hernandez M,Stolfo S.The Merge/Purge problem for large databases[C] //Proceeding of ACM SIGMOD International Conference on Management of Data.Boston:ACM,1995:127-138.

共引文献41

同被引文献95

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部