期刊文献+

What is the role of tensile cracks in cohesive slopes? 被引量:5

What is the role of tensile cracks in cohesive slopes?
下载PDF
导出
摘要 The traditional limit equilibrium method(LEM) is often used to search for the failure surface with a minimum safety factor of slope. In this method, the failure surface is considered as a shear surface,irrespective of its form. However, tensile cracks are frequently found at the outcrops of landslides. In this study, three sets of tests on small-scale landslides with different inclination angles were conducted. The test results demonstrated that tensile cracks could arise in the slope sliding process and the failure surface is composed of both a shear and a tensile fracture surface. Based on the test results, we used the improved LEM, and replaced the traditional shear failure surface by a tensile-shear coupling one, thus new tensile failure modes for slope stability analysis can be established. The safety factors of slope in different failure modes were compared, which show that when considering soil tensile failure and tensile strength less than a certain value(e.g. 15 kPa, 44 kPa and 55 kPa for linear, circular and logarithmic spiral failure surfaces, respectively), the safety factors of slope with three different failure surfaces are less than the one that did not consider the tensile failure. The most critical failure surfaces of the slope may be composed of shear and tensile damages because the tensile strength of the soil cannot be generally greater than its cohesion. The traditional limit equilibrium method(LEM) is often used to search for the failure surface with a minimum safety factor of slope. In this method, the failure surface is considered as a shear surface,irrespective of its form. However, tensile cracks are frequently found at the outcrops of landslides. In this study, three sets of tests on small-scale landslides with different inclination angles were conducted. The test results demonstrated that tensile cracks could arise in the slope sliding process and the failure surface is composed of both a shear and a tensile fracture surface. Based on the test results, we used the improved LEM, and replaced the traditional shear failure surface by a tensile-shear coupling one, thus new tensile failure modes for slope stability analysis can be established. The safety factors of slope in different failure modes were compared, which show that when considering soil tensile failure and tensile strength less than a certain value(e.g. 15 kPa, 44 kPa and 55 kPa for linear, circular and logarithmic spiral failure surfaces, respectively), the safety factors of slope with three different failure surfaces are less than the one that did not consider the tensile failure. The most critical failure surfaces of the slope may be composed of shear and tensile damages because the tensile strength of the soil cannot be generally greater than its cohesion.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期314-324,共11页 岩石力学与岩土工程学报(英文版)
基金 financially supported by the National Natural Science Foundation of China (Grant No. 41572277) the Guangdong Natural Science Foundation (Grant No. 2015A030313118)
关键词 TENSILE cracks LANDSLIDE Stability analysis Tensile-shear coupling failure surface Limit EQUILIBRIUM method(LEM) Tensile cracks Landslide Stability analysis Tensile-shear coupling failure surface Limit equilibrium method (LEM)
  • 相关文献

参考文献3

二级参考文献32

共引文献84

同被引文献51

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部