期刊文献+

Design adaptations in a large and deep urban excavation: Case study 被引量:1

Design adaptations in a large and deep urban excavation: Case study
下载PDF
导出
摘要 In this paper, design, re-design, and performance of a long-standing very deep excavation, which was originally planned to depth of 38 m, are presented. Over-digging was not planned in the original design,thus the reassessment was performed. Two main topics were followed: deepening to increase the maximum depth of an existent excavation from 38 m to 42.5 m, and feasibility for upgrading a predesigned support system from temporary to permanent support system. The geological investigations in the project site illustrated a type of stiff and cemented coarse-grained alluvium. An observational approach with additional geotechnical investigations and in situ tests was applied. Back analyses of stability of an unsupported access ramp, as well as deformation monitoring of walls, were used in order to review geotechnical design parameters that represent the full-scale behavior of the ground. Additional nails and soldier piles together with building mat foundation were implemented as a complementary lateral support in the retaining system. From an engineering point of view, by assuming a corrosion rate of 0.065 mm/a for existent rebars, according to chemical and electrical resistivity tests, the long-term performance of the revised retaining system was verified by static and pseudo-dynamic ultimate limit state analyses. Performance monitoring during the construction shows that the measured deformation is in the lower limit of the prediction. In this paper, design, re-design, and performance of a long-standing very deep excavation, which was originally planned to depth of 38 m, are presented. Over-digging was not planned in the original design,thus the reassessment was performed. Two main topics were followed: deepening to increase the maximum depth of an existent excavation from 38 m to 42.5 m, and feasibility for upgrading a predesigned support system from temporary to permanent support system. The geological investigations in the project site illustrated a type of stiff and cemented coarse-grained alluvium. An observational approach with additional geotechnical investigations and in situ tests was applied. Back analyses of stability of an unsupported access ramp, as well as deformation monitoring of walls, were used in order to review geotechnical design parameters that represent the full-scale behavior of the ground. Additional nails and soldier piles together with building mat foundation were implemented as a complementary lateral support in the retaining system. From an engineering point of view, by assuming a corrosion rate of 0.065 mm/a for existent rebars, according to chemical and electrical resistivity tests, the long-term performance of the revised retaining system was verified by static and pseudo-dynamic ultimate limit state analyses. Performance monitoring during the construction shows that the measured deformation is in the lower limit of the prediction.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期389-399,共11页 岩石力学与岩土工程学报(英文版)
关键词 DEEP EXCAVATION Field observations In SITU tests Support system Adaptive DESIGN INVERSE analysis Deep excavation Field observations In situ tests Support system Adaptive design Inverse analysis
  • 相关文献

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部