期刊文献+

基于Bi-LSTM和CRF的药品不良反应抽取模型构建 被引量:6

Construction of an Adverse Drug Reaction Extraction Model Based on Bi-LSTM and CRF
原文传递
导出
摘要 【目的】提出处理社会媒体上不规范文本的方法,以提高社会媒体中药品不良反应抽取效果。【方法】基于TensorFlow深度学习框架,将LSTM和CRF结合,借助LSTM能利用上下文信息的特性,通过CRF层考虑输出标记的依赖关系,构建基于Bi-LSTM和CRF的药品不良反应抽取模型。【结果】在Twitter数据集上开展系列实验,结果表明与传统CRF、前向LSTM、后向LSTM和Bi-LSTM相比,Bi-LSTM-CRF可以取得最高的F-measure值(0.7963)。【局限】实验数据源相对单一,未来可以在多个数据源上验证Bi-LSTM-CRF方法的有效性。【结论】结合LSTM和CRF能够有效处理社会媒体上不规范文本,所构建的模型可较好识别不良反应实体,辅助相关部门进行决策。 [Objective] To improve the performance of extracting adverse drug reactions from social media,a method is proposed to deal with non-standard texts in social media.[Methods] This method Bi-LSTM-CRF combined LSTM and CRF,and was implemented using TensorFlow.LSTM Could utilize context information,while CRF Could consider the dependence of output tags.An adverse drug reaction extraction model was constructed based on Bi-LSTM-CRF.[Results] A series of experiments were carried out on the Twitter dataset.The experimental results showed that the proposed Bi-LSTM-CRF method achieved the highest F-measure(0.7963)for adverse drug reaction extraction,compared with other methods,including CRF,forward LSTM,backward LSTM,and Bi-LSTM.[Limitations] The experiments were performed on only one corpus,and the validity of the proposed method need be verified on other data sources.[Conclusions] Combining Bi-LSTM and CRF can effectively deal with non-standard texts in social media.The constructed model in this paper can identify adverse drug reactions effectively and support relevant departments in decision-making.
作者 朱笑笑 杨尊琦 刘婧 Xiaoxiao Zhu;Zunqi Yang;Jing Liu(Department of Management Information System,Tianjin University of Finance and Economics,Tianjin 300222,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2019年第2期90-97,共8页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金青年基金项目"基于文本挖掘的社会媒体药品不良反应抽取研究"(项目编号:71701142) 天津财经大学本科生科研训练计划"基于互联网数据的"药品百事通"决策支持系统研究"(项目编号:SRT201799)的研究成果之一
关键词 社会媒体 药品不良反应 CRF LSTM Social Media Adverse Drug Reactions CRF LSTM
  • 相关文献

同被引文献83

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部