期刊文献+

喷嘴流道数对涡流管内部温度、压力分布的影响 被引量:2

Influence of Nozzle Flow Path Number on Temperature and Pressure Distributions of Vortex Tube:A Simulation Study
下载PDF
导出
摘要 以理想CO_2气体为工质,采用Standard k-ε湍流模型,对涡流管能量分离效应进行数值模拟,分析了管内流体总温、总压的分布。在此基础上,探究了进口温度为298.15 K、进口压力为6.5 MPa、冷流率为0.1时,喷嘴流道数对涡流管内总温、总压分布以及能量分离性能的影响。模拟结果表明:喷嘴流道数在2-6范围内变化时,轴向上:总温、总压先减小后增大、径向上:总温、总压先减小后增大,制冷温度效应先增大后减小,当喷嘴流道数为3时具有最佳制冷制热温度效应。 The energy separation by a vortex tube,with ideal CO2 gas medium,was mathematically formulated with a standard k-ε turbulence model and numerically simulated.The influence of the nozzle flow path number on the flow field profiles and energy separation was investigated under the conditions,including an inlet temperature of 298.15 K,an inlet pressure of 6.5 MPa and a cold flow rate of 0.1.The simulated results show that the nozzle flow path number significantly affects the refrigeration and heating of the vortex tube.For example,as the flow path number increases from 2 to 6,both the axial/radial temperature and pressure distributions change in a decrease-increase manner,resulting in an increase-decrease variation of refrigeration.An optimized nozzle flow path number of 3 accounts for the most effective refrigeration and heating of the vortex tube.
作者 何丽娟 孙尚志 马文清 王淑旭 张磊 田宝云 He Lijuan;Sun Shangzhi;Ma Wenqing;Wang Shuxu;Zhang Lei;Tian Baoyun(College of Environment and Energy,Inner Mongolia University of Science and Technology,Baotou 014010,China;Baotou Iron and Steel Vocational Technology College,Inner Mongolia,Baotou 014010,China)
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2019年第3期261-267,共7页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金项目(51106068) 国家自然科学基金项目(51566014) 内蒙古自治区自然科学基金项目(2015MS0547) 内蒙古自治区科技创新引导奖励资金项目(2017CXYD-1)
关键词 数值模拟 热端管长 流场分布 能量分离 numerical simulation hot end tube length flow field distribution energy separation
  • 相关文献

参考文献6

二级参考文献20

  • 1冷小军,顾安忠,顾晓华.涡流管制冷的实验研究[J].流体机械,1996,24(8):54-56. 被引量:7
  • 2SMITH Eiamsa-ard,PONGJET Promvonge.Numerical prediction of vortex flow and thermal separation in a subsonic vortex tube[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(8):1406-1415. 被引量:5
  • 3周少伟,姜任秋,宋福元,张鹏,王朋涛,蔡洁.涡流管内流动与传热数值模拟[J].化工学报,2006,57(7):1548-1552. 被引量:22
  • 4[1]Ranque G J. Experiences Sur La Detente Giratoire Avec Productions Simultanees d'un Echappement d'air Chaud etd'air Froid. J. Physique Radium, 1933, Ⅳ: 112-114
  • 5[2]M H Saidi, M S Vlipour. Experimental Modeling of Vortex Tube Refrigerator. Applied Thermal Engineering,2003, 23:1971-1980
  • 6[4]Cockerill TT. Thermodynamics and Fluid Mechanics of a Ranque-Hilsch Vortex Tube MSc Thesis. University Chambridge, 1998
  • 7[5]Vlad Bezprozvannykh, Hank Mottl. The Ranque-Hilsch Effect: CFD Modeling. Eleventh Annual Conference of the CFD Society of Canada, 2003. 2:651-654
  • 8HuangZhongyue(黄钟岳) HuHongtao(胡洪涛).Study on improving the cooling effect of vortex tube[J].制冷技术,2002,(1):18-20.
  • 9ShenWeidao(沈维道) ZhenPeizhi(郑佩芝).Engineering Thermodynamics(工程热力学)(2nd ed)[M].Beijing:Higher Education Press,1983.290-291.
  • 10Heishichiro Takahama.Studies on vortex tube.Japan Society of Mechanical Engineers,1965,8(31):202-222.

共引文献55

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部