期刊文献+

Gas-phase electrocatalytic conversion of CO_2 to chemicals on sputtered Cu and Cu–C catalysts electrodes 被引量:3

Gas-phase electrocatalytic conversion of CO_2 to chemicals on sputtered Cu and Cu–C catalysts electrodes
下载PDF
导出
摘要 A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane(PEM)was developed to electrochemically convert CO_2into organic compounds.Two different Cu-based cathode catalysts(Cu and Cu–C)were prepared by physical vapor deposition method(sputtering)and subsequently employed for the gas-phase electroreduction of CO_2at different temperatures(70–90°C).The prepared electrodes Cu and Cu–C were characterized by X-ray diffraction(XRD),X-ray photoemission spectroscopy(XPS)and scanning electron microscopy(SEM).As revealed,Cu is partially oxidized on the surface of the samples and the Cu and Cu–C cathodic catalysts were comprised of a porous,continuous,and homogeneous film with nanocrystalline Cu with a grain size of 16 and 8 nm,respectively.The influence of the applied current and temperature on the electro-catalytic activity and selectivity of these materials was investigated.Among the two investigated electrodes,the pure Cu catalyst film showed the highest CO_2specific electrocatalytic reduction rates and higher selectivity to methanol formation compared to the Cu–C electrode,which was attributed to the higher particle size of the former and lower Cu O/Cu ratio.The obtained results show potential interest for the possible use of electrical renewable energy for the transformation of CO_2into valuable products using low metal loading Cu based electrodes(0.5 mg Cu cm^(-2))prepared by sputtering. A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane(PEM)was developed to electrochemically convert CO_2into organic compounds.Two different Cu-based cathode catalysts(Cu and Cu–C)were prepared by physical vapor deposition method(sputtering)and subsequently employed for the gas-phase electroreduction of CO_2at different temperatures(70–90°C).The prepared electrodes Cu and Cu–C were characterized by X-ray diffraction(XRD),X-ray photoemission spectroscopy(XPS)and scanning electron microscopy(SEM).As revealed,Cu is partially oxidized on the surface of the samples and the Cu and Cu–C cathodic catalysts were comprised of a porous,continuous,and homogeneous film with nanocrystalline Cu with a grain size of 16 and 8 nm,respectively.The influence of the applied current and temperature on the electro-catalytic activity and selectivity of these materials was investigated.Among the two investigated electrodes,the pure Cu catalyst film showed the highest CO_2specific electrocatalytic reduction rates and higher selectivity to methanol formation compared to the Cu–C electrode,which was attributed to the higher particle size of the former and lower Cu O/Cu ratio.The obtained results show potential interest for the possible use of electrical renewable energy for the transformation of CO_2into valuable products using low metal loading Cu based electrodes(0.5 mg Cu cm^(-2))prepared by sputtering.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期46-53,共8页 能源化学(英文版)
基金 Financial support from the "Spanish Ministry of Economy, Industry, and Competitiveness" (Project CTQ2016-75491-R) from Abengoa Research the Spanish Ministry of Economy, Industry, and Competitiveness for financial support through the Ramón y Cajal Program, Grant: RYC-2015-19230
关键词 C02 VALORIZATION ELECTRO-REDUCTION CU catalyst PEM Selectivity Methanol production CO_2 valorization Electro-reduction Cu catalyst PEM Selectivity Methanol production
  • 相关文献

同被引文献6

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部