期刊文献+

单晶硅表面池沸腾可视化测量及数据分析 被引量:5

Visual measurement and data analysis of pool boiling on silicon surfaces
下载PDF
导出
摘要 针对核态沸腾过程,利用高速摄像机和红外热成像设备对光滑、微坑、均匀微柱和槽型微柱四种不同单晶硅表面的沸腾现象进行了在线可视观测,获得了各表面气泡动力学演变过程及局部温度演变规律,揭露了基于动力学过程的沸腾强化机理。由沸腾曲线可知,光滑硅表面,沸腾起始过热度为6℃,而三种微结构表面,起沸过热度为3~4℃;同时,微坑、槽型微柱和均匀微柱表面核态沸腾的CHF较光滑表面分别提高了109%、129%和140%。动力学演变过程则证明了微坑的存在为核化沸腾提供了核化点,有效降低了核化能垒、缩短了壁面蓄能阶段的时长。微柱的存在大幅度增加了气泡核化密度,减小了脱离直径,缩短了脱离时间,促进了沸腾表面温度的均匀化。 The high-speed video and high-speed infrared were used to visual measure the boiling phenomenon on four kinds of monocrystalline silicon surfaces including smooth,cavity,pitch and groove-pitch surfaces.The dynamic evolution process and the local temperature evolution law reveal the boiling enhancement mechanism based on the dynamic process.For the smooth silicon surface,the superheat is 6℃when the boiling starts under low heat transfer,and this superheat is around 3-4℃for the three micro-structured surfaces.In addition,compared with the smooth surface,the CHF for cavity,groove-pitch and pitch surfaces are increased by 109%,129%and 140%,respectively.According to the dynamic evolution of bubble,cavities provide the nucleation sites,decrease the nucleation barrier energy and shrink the energy accumulation stage.Pitches significant increase nucleation sites,decrease departure diameter and departure time of bubbles,which uniform the boiling surface temperature.
作者 陈宏霞 孙源 宫逸飞 黄林滨 CHEN Hongxia;SUN Yuan;GONG Yifei;HUANG Linbin(Energy Power and Mechanical Engineering Department,North China Electric Power University,Beijing 102206,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2019年第4期1309-1317,共9页 CIESC Journal
基金 国家自然科学基金项目(51576063) 2019年度装备预研教育部联合基金青年人才基金项目(6141A02033526)
关键词 微结构 池沸腾 气泡动力学 局部温度 高速红外 micro-structure pool boiling bubble dynamics local temperature high-speed infrared
  • 相关文献

参考文献5

二级参考文献78

  • 1张后雷,谭俊杰,章立新.多孔铝内体积对流传热系数的测量[J].化工学报,2004,55(10):1710-1713. 被引量:2
  • 2杨海涛,黄洪雁,冯国泰,苏杰先,王仲奇.低速压气机中静叶Clocking效应的二维和三维数值模拟与实验结果验证[J].工程热物理学报,2005,26(6):927-930. 被引量:2
  • 3卢天健,何德坪,陈常青,赵长颖,方岱宁,王晓林.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-535. 被引量:247
  • 4Calmidi V V, Mahajan R L. Forced convection in high porosity metal foams. ASME Journal of Heat Transfer, 2000, 122:557-565
  • 5Kim S Y, Kang B H, Kim J H. Forced convection from aluminum foam materials in an asymmetrically heated channel. Int. J. Heat Mass Transfer, 2001, 44:1451-1454
  • 6ShiMingheng(施明恒) YuWeiping(虞维平) WangBuxuan(王补宣).On the heat and mass transfer in porous media[J].东南大学学报,1994,24:1-7.
  • 7Poulikakos D, Kazmierczak M. Foreed convection in a duct partially filled with a porous material. ASME Journal of Heat Transfer, 1987, 109:653 -662
  • 8Zhao C Y, Lu T J, Hodson H P. Thermal radiation in ultra light metal foams with open cells. Int. J. Heat Mass Transfer, 2004, 47:2927-2939
  • 9Lage J L, Antohe B V, Nield D A. Two types of nonlinear pressure drop versus flow rate relation observed for saturated porous media. Journal of Fluids Engineering, 1997, 119:700- 706
  • 10Bastawros A F, Evans A G, Stone H A. Evaluation of cellular metal heat transfer media: Report MECH 325, Division of Engineering and Applied Sciences[R]. Cambridge, MA: Harvard University, 1998

共引文献55

同被引文献26

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部