摘要
设计并制作了总厚度为0.85 mm的超薄平板热管,热管的毛细芯采用烧结多孔槽道结构,实现了槽道和多孔结构的结合,根据该结构制作了一个铝制模具。该热管设计结合了超薄化和易制作的特点,对热管性能测试搭建了实验平台,分析了加热功率、铜粉粒径、槽道数目对热管热性能的影响,热阻和最大传热能力用来表征热管的性能。结果表明在加热功率为14 W时,放置铜板和热管的加热铜块温度分别是102℃和66℃,热管有效降低了热源温度;当铜粉粒径较大时热管的热阻和传热极限也较大,粒径减少时出现相反现象。相比单槽道结构,双槽道结构出现了更低热阻,两者最小差异为21%。
An ultra-thin plate heat pipe with a total thickness of 0.85 mm was designed and manufactured.The capillary core of the heat pipe adopts a sintered porous channel structure to realize the combination of the channel and the porous structure.According to this structure,an aluminum mold was manufactured.The heat pipe design combines the features of ultra-thin and easy fabrication,and sets up an experimental platform for heat pipe performance testing.The influence of heating power,copper powder particle size,and number of channels on thermal performance were analyzed.Thermal resistance and maximum heat transport capacity were used to characterize the performance of heat pipes.The results show that when the heating power is 14 W,the temperature of the heated copper block with copper plate and heat pipe is 102℃and 66℃,respectively,and the heat pipe effectively reduces the temperature of the heat source.When the particle size of the copper powder is larger,the thermal resistance and the heat transfer limit of the heat pipe are also larger.When the particle size decreases,the opposite phenomenon occurs.Compared to the single-channel structure,the dual-channel structure has a lower thermal resistance,and the lowest difference is 21%.
作者
朱明汉
白鹏飞
胡艳鑫
黄金
ZHU Minghan;BAI Pengfei;HU Yanxin;HUANG Jin(School of Materials and Energy,Guangdong University of Technology,Guangzhou 510640,Guangdong,China;South China Academy of Advanced Optoelectronic,South China Normal University,Guangzhou 510640,Guangdong,China)
出处
《化工学报》
EI
CAS
CSCD
北大核心
2019年第4期1349-1357,共9页
CIESC Journal
基金
国家自然科学基金项目(51476038)
广州市科技计划产学研协同创新重大专项项目(201704030009)
南沙区科技计划产学研合作项目(2016CX013)
关键词
超薄平板热管
烧结
多孔槽道结构
传热
铜粉粒径
热性能
实验验证
ultra-thin flat heat pipe
sintering
porous channels structure
heat transfer
particle size of copper powder
thermal performance
experimental validation