期刊文献+

基于化学爆炸模式分析方法的乙烯对冲扩散火焰熄火机理 被引量:4

Extinction mechanism of ethylene opposed-flow diffusion flame using chemical explosive mode analysis method
下载PDF
导出
摘要 重点探讨了化学爆炸模式分析(CEMA)在熄火机理研究中的具体方法理论及可行性,研究了化学反应/热质混合相互作用对熄火的影响,并利用爆炸因子和分叉因子的概念,确定出主导乙烯火焰熄火极限的关键反应动力学因素。结果表明:具有正特征值的CEM首次出现在熄火极限附近火焰化学当量等值面处,因此它可作为判断熄火的重要依据。火焰的熄火极限是放热与链分支、中断反应综合作用的结果,链分支反应R32(H+O_2===O+OH)和放热反应R81(OH+CO===H+CO_2)对乙烯熄火极限的影响最显著,增大这两步反应速率能极大地扩宽燃烧稳定范围;而增大链中断反应R49(H+HCO===H_2+CO)的速率会缩小燃烧稳定范围。基于CEMA方法与爆炸因子、分叉因子的概念,可系统地揭示详细反应动力学对熄火的影响机理。 The basic methodological theory as well as its feasibility of the chemical explosion mode analysis(CEMA)method in flame extinction mechanism study was particularly emphasized.The interaction between detailed chemistry and thermal/mass mixing as well as its impact on flame extinction was analyzed.The concept of factor determines the key reaction kinetic factors that dominate the flame flameout limit of ethylene.The results show that the CEM with positive eigenvalues firstly appeared at the stoichiometric location in the near-extinction condition,so positive CEM could play as an important criterion for the detection of combustion instability.The extinction limit of opposed-flow diffusion flame resulted from the comprehensive interaction between heat release and chain branching and termination reactions.It is found that the branching reaction R32(H+O2===O+OH)and exothermic reaction R81(OH+CO===H+CO2)were most significant for the ethylene flame extinction limit,which could be largely broadened with the enhancements of these two recations.On the contrary,enhancement of the termination reaction R49(H+HCO===H2+CO)was unforable to ethylene flammability.The CEMA theory with the concepts of explosive index and bifurcation index was a systematical tool to reveal the impact of detailed chemical kinetics on flame extinction mechanism.
作者 亢银虎 张朋远 刘葱葱 马江泽 卢啸风 KANG Yinhu;ZHANG Pengyuan;LIU Congcong;MA Jiangze;LU Xiaofeng(Key Laboratory of Low-grade Energy Utilization Technologies and Systems,Ministry of Education,Chongqing University,Chongqing 400044,China;School of Urban Construction and Environmental Engineering,Chongqing University,Chongqing 400045,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2019年第4期1644-1651,共8页 CIESC Journal
基金 国家自然科学基金项目(51706027) 中国博士后科学基金项目(2016M590865)
关键词 动力学理论 爆炸 化学反应 计算机模拟 燃料 dynamics theory explosion chemical reaction computational simulation fuel
  • 相关文献

参考文献3

二级参考文献62

  • 1毕明树,丁信伟,周一卉,喻建良,王淑兰,ABULITIAbudula.Experimental Study on Unconfined Vapor Cloud Explosion[J].Chinese Journal of Chemical Engineering,2003,11(1):90-93. 被引量:3
  • 2张勇,黄佐华,廖世勇,王倩,蒋德明.天然气/氢气燃烧特性研究[J].内燃机学报,2006,24(3):200-205. 被引量:21
  • 3章熙民,李惟毅,李汛,覃耘.高温水平圆管表面自然对流换热的研究[J].工程热物理学报,1990,11(1):56-61. 被引量:8
  • 4DUNN-RANKIN D, LEAL E M, WALTHER D C. Personal power system[J]. Prog. Energy Combust. Sci., 2005, 31(5/6):422-465.
  • 5MARUTA K, TAKEDA K, SITZKI L, et al. Catalytic combustion in micro-channel for MEMS power generation[C]//The Third Asia-Pacific Conference on Combustion. Seoul, Korea, 2001:1-4.
  • 6FERNANDEZ-PELLO A C. Micro-power generation using combustion:issues and approaches[J]. Proc. Combust. Inst., 2002, 29(1):883-899.
  • 7SIRIGNANO W A, PHAM T K, DUNN-RANKIN D. Miniature-scale liquid-fuel-film combustor[J]. Proc. Combust. Inst., 2002, 29(1):925-931.
  • 8ZAMASCHIKOV V V. Combustion of gases in thin-walled small diameter tubes[J]. Combust. Explos. Shock Waves, 1995, 31(1):20-22.
  • 9MARUTA K. Micro and mesoscale combustion[J]. Proc. Combust. Inst., 2011, 33(1):125-130.
  • 10WANG H O, LUO K, LU S Q, et al. Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor[J]. Int. J. Hydrogen Energy, 2011, 36(21):13838-13849.

共引文献28

同被引文献11

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部