期刊文献+

基于SoCFPGA的BDS/GPS双模定位算法研究 被引量:1

Research on BDS/GPS Dual-mode Location Based on SoCFPGA
下载PDF
导出
摘要 随着多个国家和地区全球卫星导航系统技术的快速发展,同时兼容多个导航系统的多模卫星导航定位算法成为研究热点。与单模导航系统相比,多模导航系统具有可见星数多、覆盖范围广、定位精度高和可靠性高等诸多优点。鉴于此,描述了一款基于SoCFPGA实现的BDS/GPS双模接收机。数据采集、卫星信号捕获和跟踪等部分由接收机的FPGA实现,定位解算由接收机的嵌入式软件实现。由于卡尔曼滤波器存在发散现象,因此在定位解算软件中采用经平方根滤波算法优化的卡尔曼滤波算法。最终实验表明,所提算法的定位精度在2 m以内,验证了该算法的可行性和有效性。 With the rapid development of global satellite navigation system technology in many countries and regions,multi-mode satellite navigation localization algorithm compatible with multiple navigation systems has become a research hotspot.Compared with single-mode navigation system,multi-mode navigation system has many advantages,such as more visible stars,wide coverage,high positioning accuracy and high reliability.In view of this,a BDS/GPS dual-mode receiver based on SoCFPGA is described.Data acquisition,satellite signal acquisition and tracking are implemented by the receiver’s FPGA,and positioning solution is implemented by the receiver’s embedded software.Because of the divergence of Kalman filter,the Kalman filter algorithm optimized by square root filtering algorithm is used in the positioning software.The final experiment shows that the positioning accuracy is less than 2 m,which verifies the feasibility and effectiveness of the algorithm.
作者 张文德 刘怡俊 ZHANG Wen-de;LIU Yi-jun(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出处 《通信电源技术》 2019年第3期85-86,89,共3页 Telecom Power Technology
关键词 卫星接收机 SoCFPGA 卡尔曼滤波 平方根滤波 嵌入式软件 satellite receiver SoCFPGA kalman filter square root filter embedded software
  • 相关文献

参考文献3

二级参考文献17

  • 1房建成.[D].南京:东南大学,1998.
  • 2杨元喜.动态系统的抗差Kalman滤波[J].解放军测绘学院学报,1997,14(2):79-84.
  • 3Koch K R and Kusche J. Regularization of geopotential determination from satellite data by variance components [J]. Journal of Geodesy, 2002, 76 (5): 259-268.
  • 4Yang Y, Cui X and Gao W. Adaptive Integrated Navigation for Multi-sensor Adjustment Outputs [J]. The Journal of Navigation, 2004, 57(1):1-9.
  • 5Yang Y and Xu T. An Adaptive Kalman Filter Based on Sage Windowing Weights and Variance Components [J].The Journal of Navigation, 2003, 56(2): 231-240.
  • 6Yang Y, He H and Xu G. Adaptively robust filtering for kinematic geodetic positioning [J]. Journal of Geodesy, 2001a, 75(2): 109-116.
  • 7Yang Y, Xu T and He H. On adaptively kinematic filtering. Selected Papers for English of Acta Geodetica et Cartographica Sinica, 2001b, 25-32.
  • 8Escam illa-Ambrosio P J, Mport N. Multiseusor Data Fusion Architecture Based on Adaptive Kalman Filters and Fuzzy Logic Performance Assessment. Proceedings of the Fifth Intemational Conference on Information Fusion, FUSION 2002. Annapolis, USA,July 2002, 2:1542- 1549.
  • 9Sasiakek J Z, Wang Q, Zeremba M B. Fuzzy Adaptive Kalman Filtering For INS/GPS Data Fusion. Proceedings of the 15th IEEE Intelligent Control, Rio, Patras, GREECE. July , 2000, 17- 19:181 - 186.
  • 10张晓亮.GPS/SINS组合导航系统应用研究[D].南京理工大学2013

共引文献65

同被引文献14

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部