摘要
本文针对五类简单几何体三维模型,设计了完整的卷积神经网络模型以实现自动分类识别。首先本文运用CATIA二次开发技术完成了模型的生产并收集了原始数据,其次运用图像处理的理论对原始数据进行了预处理,然后运用卷积神经网络理论完成了本文的卷积神经网络模型设计,最后进行了实验分析并验证了本文模型的可行性。
In this paper,a complete convolution neural network model is designed for automatic classification and recognition of five kinds of simple geometric three-dimensional models.Firstly,the CATIA secondary development technology is used to complete the production of the model and collect the original data.Secondly,the theory of image processing is used to preprocess the original data.Thirdly,the convolutional neural network model is designed by using the convolutional neural network theory.Finally,the feasibility of the model is analyzed and verified through experiments.
作者
党应聪
陈劲杰
DANG Yingcong;CHEN Jinjie(University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《软件工程》
2019年第4期13-16,共4页
Software Engineering
关键词
卷积神经网络
识别与分类
简单几何体
三维模型
convolutional neural network
classification and recognition
simple geometric
3D models