期刊文献+

基于GAPSO-SVM的煤层底板破坏程度预测 被引量:4

Prediction of Damage Degree of Coal Seam Floor Based on GAPSO-SVM
下载PDF
导出
摘要 为了对煤层底板破坏程度进行正确预测,分析遗传算法(GA)和粒子群优化(PSO)算法存在优化支持向量机(SVM)易陷入局部最优解和分类精度相对较低的问题,提出了GAPSOSVM优化算法。综合考虑GA和PSO算法的优点对SVM的参数进行了优化,优化后的算法能够较好地调整算法的全局与局部搜索能力之间的平衡。通过对曹庄煤矿底板破坏程度的预测表明,该方法不仅能够取得良好的分类效果,分类精度高于GA-SVM和PSO-SVM,而且有较好的鲁棒性。 In order to correctly predict the damage degree of coal seam floor, the genetic algorithm(GA) and particle swarm optimization(PSO) algorithm have the problems that optimization support vector machine(SVM) is easy to fall into the local optimal solution and the classification accuracy is relatively low. GAPSO-SVM is proposed. The parameters of SVM are optimized by considering the advantages of GA and PSO algorithms. The optimized algorithm can better adjust the balance between the global and local search capabilities of the algorithm. The prediction of the damage degree of the bottom plate of Caozhuang Coal Mine shows that the method can not only achieve good classification effect, but also has higher classification accuracy than GA-SVM and PSO-SVM, and has better robustness.
作者 靳聪聪 冯夕文 阮猛 李俊勇 JIN Congcong;FENG Xiwen;RUAN Meng;LI Junyong(College of Mining and Rifely Engineering, Shandong Unirersity of Science and Technology, Qingdao 266590, China;State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology ,Qingdao 266590,China;National Demonstration Center for Experimental Mining Engineering Educalion,Shandong Unirersity of Science and Technology,Qingdao 266590, China)
出处 《煤矿安全》 CAS 北大核心 2019年第3期208-211,共4页 Safety in Coal Mines
关键词 煤层底板破坏 支持向量机 遗传算法 粒子群优化算法 突水 damage of seam floor support vector machine genetic algorithm particle swarm optimization algorithm water inrush
  • 相关文献

参考文献17

二级参考文献235

共引文献1322

同被引文献99

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部