期刊文献+

应用机器学习构建细菌性脓毒症的菌型预测模型 被引量:4

Application of Machine Learning to Construct the Bacterial Type Prediction Model for Bacterial Sepsis
下载PDF
导出
摘要 目的:应用机器学习方法构建细菌性脓毒症患者的菌型预测模型,辅助医生进行病情严重程度的评估以及抗感染治疗。方法:选取MIMIC-Ⅲ数据库中的脓毒症患者199例,其血培养结果均为阳性的单一菌种,其中G^+菌117例,G^-菌82例。收集患者在血培养前检测的体重、白蛋白(ALB)、C-反应蛋白(CRP)、血小板(PLT)、中性粒细胞(NEUT),结合年龄作为主要研究变量,然后采用XGBoost算法构建菌型预测模型。结果:模型的灵敏度、特异性、准确率和AUC值分别是0.83、0.88、0.85和0.83。结论:基于XGBoost算法的G^+菌和G^-菌的预测模型可以预测细菌性脓毒症患者感染的菌型,从而辅助医生评估脓毒症患者的病情,指导抗菌用药。 Objective:To construct a predictive model of bacterial type in bacterial sepsis patients by machine learning,which assists doctors in assessing the severity of the disease and anti-infective treatment.Methods:A total of 199 patients with sepsis in the MIMIC-Ⅲdatabase were selected.The blood culture results were all positive single strains,including 117 patients with G^+bacteria and 82 patients with G^-bacteria.The body weight,albumin(ALB),C-reactive protein(CRP),platelet(PLT)and neutrophil(NEUT)detected before blood culture were collected,which combining with age were used as the main research variable.Then the XGBoost algorithm was used to construct the predictive model of bacterial type.Results:The sensitivity,specificity,accuracy and AUC values of the model were 0.83,0.88,0.85 and 0.83 respectively.Conclusion:The predictive model of G^+and G^-bacteria based on XGBoost algorithm can predict the bacterial type of infection in patients with bacterial sepsis,thus assisting doctors in assessing the condition of sepsis patients and guiding antibiotics.
作者 陈秀娟 孙新 梁会营 CHEN Xiu-juan;SUN Xin;LIANG Hui-ying(Clinical Data Center of Guangzhou Women and Children's Medical Center,Guangzhou 510623,Guangdong Province,P.R.C.)
出处 《中国数字医学》 2019年第3期31-33,共3页 China Digital Medicine
基金 国家重点研发项目(编号:2018YFC1315400)~~
关键词 机器学习 XGBoost算法 细菌性脓毒症 菌型预测 machine learning XGBoost algorithm bacterial sepsis bacterial type prediction
  • 相关文献

参考文献5

二级参考文献43

  • 1姜伟玲,李天瑯.血小板联合APACHEⅡ评分在危重病临床监测中的意义[J].中华急诊医学杂志,2005,14(8):684-685. 被引量:7
  • 2王红,张淑文,任爱民,张丽霞,王超,黄樱,苏艳丽,王宝恩.重度脓毒症凝血功能紊乱与病情严重度及预后的关系[J].中华急诊医学杂志,2005,14(10):804-806. 被引量:54
  • 3王运生,谢丙炎,万方浩,肖启明,戴良英.ROC曲线分析在评价入侵物种分布模型中的应用[J].生物多样性,2007,15(4):365-372. 被引量:522
  • 4FRY DE. Sepsis, systemic inflammatory response, and multiple organ dysfunction: the mystery continues[J]. Am surg,2012,78(1):1-8.
  • 5LEVI M, LWENBERG EC. Thrombocytopenia in critically ill patients[J].Semin Thromb Hemost,2008,34(5):417-424.
  • 6LEVY MM, FINK MP, MARSHU LC, et al.2001 SCCM/ESICM/AC/CP ATS/SIS international sepsis definitions conference[J]. Crit Care Med,2003,31(4):1250-1256.
  • 7VANDIJCK DM, BLOT SI, DE WAELE JJ, et al. Thrombocytopenia and outcome in critically ill patients with bloodstream infection[J]. Heart Lung,2010,39(1):21-26.
  • 8BOZZA FA, SHAH AM, WEYRICH AS, et al. Amicus or adversary: platelets in lung biology,acute injury, and inflammation[J]. Am J Respir Cell Mol Biol,2009,40(2):123-134.
  • 9OBERHOFFER M, STONAUNS I, RUSSWURM S, et al. Procalcitonin expression in human peripheral blood mononuclear cells and its modulation by lipopolysaccharides and sepsis-related cytokines in vitro[J]. J Lab Clin Med,1999,134(1):49-55.
  • 10CHARLES PE, LADOIRE S, AHO S, et al. Serum procalcitonin elevation in critically ill patients at the onset of bacteremia caused by either Gram negative or Gram positive bacteria[J]. BMC Infect Dis,2008,8:38.

共引文献35

同被引文献37

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部