期刊文献+

基于深度卷积神经网络的乳腺钼靶筛查 被引量:4

Mammary Molybdenum Target Screening Based on Deep Convolutional Neural Network
下载PDF
导出
摘要 乳腺钼靶X线摄影检查是乳腺癌的筛查与诊断的重要手段之一,临床上应用广泛。随着计算机技术的发展,通过计算机算法实现对乳腺钼靶图像的自动诊断可以有效缓解医疗压力,提高诊断精度。在此基础上,通过对乳腺钼靶图像的分析,提出了一种基于深度学习的乳腺钼靶图像自动诊断方法。首先通过采样制作的切块数据集训练了一个识别乳腺钼靶中良恶性肿块及钙化病灶的多分类网络,之后使用训练好的网络实现对整张图像的遍历识别,最终返回良恶性肿块及钙化的预测概率热图。结果表明,本文算法对于切块数据的识别精度可以达到93%左右,生成的预测概率热图可以对医生提供较大的帮助。 Mammography X-ray radiography examination is one of the most important methods for breast cancer screening and early diagnosis,which is widely used in clinic application.With the development of computer technology,automatic diagnosis of mammography images can effectively relieve medical pressure and improve diagnostic accuracy.Based on that,we propose an automatic diagnosis method of mammography based on deep learning algorithm after analyzing mammography images.Firstly,a multi-classification network is trained to recognize benign and malignant tumors and calcified lesions in mammogram target by sampling data sets.Then,the trained network is used to recognize the whole image traversally,and finally the predictive probability heat map of benign and malignant tumors and calcification is returned.The results show that the accuracy of the algorithm for patches dataset can reach about 93%,and the predicted probability heatmaps can be of great help to doctors.
作者 孙泽宇 史晓林 朱延武 张姗姗 郭建飞 赵地 SUN Ze-yu;SHI Xiao-lin;ZHU Yan-wu(Digital China Medical Technology Co.,Ltd.,Beijing 100080,P.R.C.)
出处 《中国数字医学》 2019年第3期62-65,共4页 China Digital Medicine
关键词 深度学习 乳腺钼靶图像 医学图像识别 神经网络 deep learning mammography images medical image recognition neural network
  • 相关文献

参考文献3

二级参考文献40

  • 1王启俊,祝伟星,邢秀梅.北京城区女性乳腺癌发病死亡和生存情况20年监测分析[J].中华肿瘤杂志,2006,28(3):208-210. 被引量:81
  • 2陈建国,朱健,张永辉.启东市1972~2000年主要恶性肿瘤生存率分析[J].中国肿瘤,2006,15(9):575-578. 被引量:34
  • 3Anderson BO,Shyyan R,Eniu A,et al.Breast cancer in limited-resource countries:an overview of the Breast Health Global Initiative2005guidelines.Breast J,2006,12(1):3-15.
  • 4American Cancer Society.Cancer Facts and Figures-2004.New York:American Cancer Society,2004.
  • 5Guo Y,Sivaramakrishna R,Lu CC,et al.Breast image registration techniques:a survey.Med Biol Eng Comput,2006,44(1):15-26.
  • 6Wechsler H.Texture analysis—a survey.Signal Processing,1980,2(3):271-280.
  • 7Srinivasan GN,Shobha G.Statistical texture analysis.Proc World Acad Sci.Engineer Tech,2008,36(1):2070-3740.
  • 8Karahaliou AN,Boniatis IS,Skiadopoulos SG,et al.Breast cancer diagnosis:analyzing texture of tissue surrounding microcalcifications.IEEE Trans Inf Technol Biomed,2008,12(6):731-738.
  • 9Graf ABA,Smola AJ,Borer S,Classification in a normalized feature space using support vector machines.IEEE Transactions on Neural Networks,2003,14(3):597-605.
  • 10全国肿瘤防治研究办公室 卫生部卫生统计信息中心.中国试点市、县恶性肿瘤的发病与死亡(1993-1997)[M].北京:中国医药科技出版社,2002..

共引文献892

同被引文献56

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部