期刊文献+

随机观测下两面跳的对偶风险模型 被引量:1

Dual Risk Model with Two-sided Jumps under Randomized Observation
下载PDF
导出
摘要 主要研究随机观测下对偶风险模型的期望折现罚金函数.首先,利用过程的马尔可夫性得到了期望折现罚金函数所满足的积分微分方程.其次,当罚金函数取不同的值时,得到了破产时的Laplace变换、破产时赤字的期望折现函数以及破产概率所满足的积分微分方程.最后,给出了两面跳均服从指数分布情况下破产概率的显性表达式以及具体的数值例子. This paper mainly studies the expected discounted penalty function of the dual risk model under randomized observation. Firstly, by using the Markov property of the process, the integral differential equation of the expected discounted penalty function is obtained. Then, the integral differential equations for the Laplace transform of the ruin time, the expected discounted function of the deficit at the ruin time and the ruin probability are derived when the penalty function takes different values. Finally, the closed-form expression and the specific numerical example of the ruin probability in the case of the exponential distribution are given.
作者 王冰冰 何敬民 WANG Bing-bing;HE Jing-min(College of Science, Tianjin University of Technology, Tianjin 300384, China)
出处 《烟台大学学报(自然科学与工程版)》 CAS 2019年第2期113-117,178,共6页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 教育部人文社科项目(14YJCZH048 15YJCZH204) 国家自然科学基金资助项目(11401436 11601382)
关键词 复合POISSON过程 期望折现罚金函数 破产概率 compound Poisson processe expected discounted penalty function probability of ruin
  • 相关文献

参考文献2

二级参考文献27

  • 1方世祖,罗建华.双复合Poisson风险模型[J].纯粹数学与应用数学,2006,22(2):271-278. 被引量:37
  • 2Gerber H U. An extension of the renewal equation and its application in the collective theory of risk [ J]. Skandinavisk Aktuarietidskrift, 1970, (3) :205-210.
  • 3Gerber H U, Landry B. On the discounted penalty at ruin in a jump-diffusion and the perpetual put option[J ]. Insurance : Mathematics and Economics, 1998,22(3) :263-276.
  • 4Chiu S N, Yin C C. The time of rain, the surplus prior to rain and the deficit at rain for the classical risk process perturbed by diffusion[J]. Insurance: Mathematics and Economics, 2003,33( 1):59- 66.
  • 5Tsai. C C L. On the discounted distribution functions of the surplus process perturbed by diffusion [ J]. Insurance: Mathematics and Economics ,2001,28(3) :401-419.
  • 6Zhang C, Wang G. The joint density function of three chaaracteristics on jump-diffusion risk process [ J]. Insurance: Mathematics and Economics ,2003,32(3) :445-455.
  • 7De Finetti B. Su un' impostazione alternativa della teoria collettiva del rischio[ A]. In: Proceedings of the Transactions of the XV International Congress of Actuaries[ CI .Vol 2. 1957,433-443.
  • 8Dickson D C M, Waters H. Some optimal dividends problems[ J]. ASTIN Bulletin, 2004, 34 ( 1 ) : 49- 74.
  • 9Gerber H U. On the probability of rain in the presence of a linear dividend barrier[ J]. Scandinavian Actuarial Journal, 1981, (2) : 105-115.
  • 10Gerber H U, Shiu E S W. Optimal dividends: analysis with Brownian motion[ J]. North American Actuarial Journal, 2004,8( 1 ) : 1-20.

共引文献5

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部