期刊文献+

社会化电商消费者购买意愿的影响研究

Research on the Influence of Socialized E-commerce Consumers' Willingness to Buy
下载PDF
导出
摘要 在互联网+时代,新的商业模式成为主流,社交媒体的传播与沟通方式发生改变。文章以社会影响理论为基础,研究用户自生内容的社会属性与价值共创对社会化电商消费者产生的影响,构建了社会化电商消费者购买意愿的概念模型。然后通过问卷调查,利用SPSS进行因子分析,再用amos进行验证性分析,最后修正模型,研究表明:UGC特征分为信息性特征和规范性特征2个因子;价值共创包括发起的价值共创和自发的价值共创2个因子;规范性特征对自发的和发起的价值共创是有显著影响的,规范性特征间接的对购买意愿也是有影响的,并在实证结论分析的基础上,提出几点建议与局限。 In the internet+era, new business models have become mainstream, and the way social media communicates and communicates has changed. Based on the theory of social influence, this paper studies the social attributes and values of user-generated content to create a socialized E-commerce consumer, and constructs a conceptual model of social E-commerce consumers' willingness to purchase. Then through questionnaire survey, using SPSS for factor analysis, then using amos for confirmatory analysis, and finally correcting the model. Research shows that UGC features are divided into two factors: informational features and normative features;value co-creation includes the creation of value co-creation and spontaneous value creation of two factors;normative features have a significant impact on spontaneous and initiated value co-creation, normative features indirectly affect purchase intentions, finally, based on the analysis of empirical conclusions, several suggestions and limitations are proposed.
作者 王金裕 高泉 WANG Jinyu;GAO Quan(Business School, Hunan University of Technology, Zhuzhou 412008, China)
出处 《物流科技》 2019年第4期65-69,共5页 Logistics Sci-Tech
关键词 信息性特征 规范性特征 价值共创 购买意愿 informative feature normative feature value co-production purchase intention
  • 相关文献

参考文献4

二级参考文献89

  • 1郭红丽.客户体验维度识别的实证研究——以电信行业为例[J].管理科学,2006,19(1):59-65. 被引量:13
  • 2LESKOVEC J, McGLOHON M, FALOUTSOS C, et al. Cascading behavior in large blog graphs patterns and a model[ C]//Proc of the Society of Applied and Industrial Mathematics: Data Mining. 2007:551-556.
  • 3GRUHL D, GUHA R, LIBEN-NOVELL D, et al. Information diffusion through blogspace[ C ] //Proc of the 13th International Conference on World Wide Web. New York:ACM Press,2004:491-501.
  • 4NARAYANAM R, NARAHAR! Y. A shapley value-based approach to discover influential nodes in social networks[ J]. IEEE Trans on Automation Science and Engineering ,2011,20( 1 ) :130-147.
  • 5LAHIRI M, CEBRIN M. The genetic algorithm as a general diffusion model for social networks [ C ]//Proc of the 24th AAAI Conference on Artificial Intelligence. 2010:494 - 499.
  • 6SUH B, HONG Li-chan, PIROLLI P, et al. Want to be Retweeted? Large scale analytics on factors impacting retweet in twitter network [ C ]//Proc of IEEE International Conference on Social Computing. 2010 : 177-184.
  • 7CHA M,HADDADI H,BENEVENUTO F,et al. Measuring user influence in twitter: the million follower fallacy [ C ]//Proc of the 4th International AAAI Conference on Weblogs and Social Media. 2010:10-17.
  • 8Deutsch M, Gerard, H. A study of normative and informational social influences upon individual judgment [ J ]. Journal of abnormal and social psychology, 1955, 51 (3) : 629 - 636.
  • 9Asch S. Studies of independence and conformity: A minority of one against a unanimous majority[J]. Psychological monographs, 1956, 70(9) : 1 -70.
  • 10Duan W J. The Power of Consumer-to-Consumer Community (Network) on the Intcrnct: Consumer Decision-Making, Product Sales, and Product Diffusio [ D ]. Unpublished Doctorial Dissertation, 2006.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部