摘要
网络安全态势预测是防御网络安全威胁的关键。在对目前网络安全态势预测方法进行分析研究后,给出支持向量机(SVM)与改进粒子群优化算法相结合的网络安全态势预测方法。该方法使用改进的粒子群优化算法来优化SVM的三个参数,其充分利用了SVM收敛速度快、样本小、泛化能力强、机器学习的优点,克服了PSO-SVM存在局部最优解及粒子早熟的问题。该方法更适合于具有时变性与非线性特征的网络安全态势预测,且克服了使用线性方法进行网络安全态势预测带来的预测精度低、描述网络目前状态与未来状态关系困难的问题。实验结果表明,使用该预测方法处理先前收集到的网络安全数据,明显提高了网络态势的预测精度,实现了对网络安全威胁的有效防御。
Network security situation prediction is the key to defending against network security threats.After the analysis and research of the current network security situation prediction methods,we present a new one combined with support vector machine (SVM) and improved particle swarm optimization.This method uses the improved particle swarm optimization to optimize the three parameters of SVM,and makes full use of the advantages of SVM such as fast convergence speed,small sample size,strong generalization and machine learning to overcome the problems of local optimal solution and particle premature in PSO-SVM.It is more suitable for the network security situation prediction with time-varying and nonlinear characteristics,and overcomes the problem of low prediction accuracy and difficult description of the relationship between the current state and the future state brought by the linear method in the network security situation prediction.Experiment shows that the proposed method has improved the prediction accuracy of the network situation by dealing with the previously collected network security data,and also has realized the effective defense of the network security threat.
作者
孙卫喜
孙欢
SUN Wei-xi;SUN Huan(School of Network Security and Information Technology,Weinan Normal University,Weinan 714099,China;School of Economics and Management,Xidian University,Xi’an 710071,China)
出处
《计算机技术与发展》
2019年第4期100-104,共5页
Computer Technology and Development
基金
陕西省自然科学基础研究计划资助项目(2017JM6110)
渭南师范学院自然科学类研究项目(18YKS13)
关键词
安全态势
支持向量机
粒子群算法
态势预测
security situation
support vector machine
particle swarm optimization
situation prediction