摘要
研究拟凸优化问题近似解的最优性条件.在已有的拟凸函数次微分的基础上提出拟凸函数4种近似次微分的概念,并给出此4种近似次微分之间的关系.然后利用4种近似次微分给出拟凸优化问题近似解的充分和必要条件,并通过实例进行说明.
We study the optimality conditions for approximate solutions of quasiconvex programming problems. On the basis of the concept of subdifferential for the quasiconvex function, four kinds of concepts of the approximate subdifferentials as well as the connection among them are given.And then, we give the sufficient and necessary conditions of the approximate solutions by using these subdifferentals. Finally, we give some examples to illustrate the main results.
作者
徐智会
陈瑞婷
高英
XU Zhihui;CHEN Ruiting;GAO Ying(Department of Mathematics,Chongqing Normal University,Chongqing 401331)
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2019年第3期337-341,共5页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(11201511和11771064)
重庆市科委项目(cstc2015jcyjA00005)
重庆市教委项目(KJ1500309)
关键词
拟凸优化
近似次微分
近似解
最优性条件
quasiconvex programming problems
subdifferential
approximate solutions
optimality conditions