摘要
采用分子动力学方法研究了微观尺度下晶粒尺寸和冷却速率对NiTi合金相变温度的影响和相变微观机理。结果表明:当冷却速率为-5 K/ps,晶粒尺寸从17.5 nm减小到8.1 nm时,马氏体相变起始温度从230 K下降到80 K,马氏体相变形核点的数目逐渐减少且主要出现在晶粒内部,降温过程中马氏体相成核后向晶界处扩散生长,当晶粒尺寸减小至4.1 nm时,马氏体相变效应则受到抑制;而升温过程中,奥氏体相变形核点主要出现在晶界处,且随着温度的升高,形核点主要向晶粒内部聚集生长。当冷却速率从-5 K/ps增加到-15 K/ps,晶粒尺寸为17.5 nm的模型中马氏体相变结束温度从190 K减小到20 K。随着冷却速率的增加,马氏体晶粒细化程度相应增加,相变滞后宽度(Mf-Af)随着冷却速率的增加相应增大,但是冷却速率对马氏体相变生长机制影响相对较小。
The molecular dynamic simulation was conducted to analyze the influence of grain size and cooling rate to the phase transformation temperature, and the phase transformation mechanism for the alloy was also studied. The result shows that when the cooling rate is -5 K/ps, as the grain size decreases from 17.5 nm to 8.5 nm, the martensite formation temperature decrease from 230 K to 80 K, the number of nucleation point also decreases gradually and only nucleate inside the grain, the martensite grows towards the grain boundary in the process of cooling. When the grain size decreases to 4.1 nm, the transformation is suppressed. In the process of heating, the nucleation point of austenits nucleates near the grain boundary and grows towards inside of the grain. When the cooling rate increases from -5 K/ps to -15 K/ps, the finish transformation temperature of martensite decreases from 190 K to 20 K, the grain refinement increases and the transformation hysteresis width (Af-Mf) decreases with the increase in cooling rate in the model of 17.5 nm. While the effect of cooling rate on martensitic phase growth mechanism is relatively small.
作者
丁军
赵昊男
黄霞
曾祥国
王路生
宋鹍
DING Jun;ZHAO Hao-nan;HUANG Xia;ZENG Xiang-guo;WANG Lu-sheng;SONG Kun(College of Mechanical Engineering,Chongqing University of Technology,Chongqing,400054,China;School of Architecture and Environment,Sichuan University,Sichuan,610065,China)
出处
《中国有色金属学报》
EI
CAS
CSCD
北大核心
2019年第3期569-578,共10页
The Chinese Journal of Nonferrous Metals
基金
国家自然科学基金委员会与中国工程物理研究院联合基金资助项目(U1530140)
重庆市基础与前沿研究计划资助项目(CSTC2016JCYJA0517
CSTC2017JCYJAX0357)
重庆市教育委员会科学技术研究资助项目(KJ1709224)~~
关键词
形状记忆合金
相变温度
冷却速率
分子动力学
shape memory alloy
phase transformation temperature
cooling rate
molecular dynamics