期刊文献+

面向不一致用户评价准则的在线服务推荐 被引量:4

Online service recommendation for inconsistent user evaluation criteria
下载PDF
导出
摘要 客观上,用户的评价准则是由主观意识决定的,用户之间的评价准则不同导致多个用户对同一服务的评分不具备可比较性,不考虑不同用户评分的不可比较性所获得的服务推荐将难以满足用户个性偏好及其真实需求。为此,提出一种面向不一致用户评价准则的在线服务推荐方法,考虑用户偏好不一致时用户对在线服务的偏好关系,以偏好关系计算用户之间的相似度,并以此获得在线服务推荐结果。首先以用户-服务评分矩阵为基础建立用户对服务的偏好关系,其次根据偏好关系计算用户之间的相似度,然后以用户相似度为基础对用户未评分的服务进行评分预测,最后以预测评分的排序结果作为推荐结果。与经典的协同过滤推荐方法的比较实验,验证了本方法的有效性。实验表明,本方法获得的推荐结果能满足大多数用户的服务偏好,同时获得了比经典的协同过滤推荐方法更好的准确率。 Objectively, user evaluation criteria are determined by subjective consciousness. Different evaluation criteria between users result in that the scores of multiple users for the same service are incomparable. Service recommendations that do not consider the incomparability of different user ratings cannot meet user personal preferences and real needs. Therefore, we propose an online service recommendation method for inconsistent user evaluation criteria. The method calculates online service recommendation results for users by considering the user’s preference relationship with the online service when user preferences are inconsistent. Firstly, based on the user-service scoring matrix, the user's preference relationship with the service is established. Secondly, the similarity between users is calculated according to the preference relationship. Thirdly, based on user similarity, the user's unscoring service is scored and predicted. Finally, the ranking results of the predicted scores are used as the recommendation results. In the experiments, we compare the method with the classical collaborative filtering recommendation method to verify its effectiveness. Experimental results show that the recommendation results obtained by the proposed method can meet the service preferences of most users, and at the same time obtain better accuracy than the classic collaborative filtering recommendation method.
作者 张国涛 付晓东 岳昆 刘骊 冯勇 刘利军 ZHANG Guo-tao;FU Xiao-dong;YUE Kun;LIU Li;FENG Yong;LIU Li-jun(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500;Faculty of Aeronautics,Kunming University of Science and Technology,Kunming 650500;School of Information Science and Engineering,Yunnan University,Kunming 650091,China)
出处 《计算机工程与科学》 CSCD 北大核心 2019年第4期733-741,共9页 Computer Engineering & Science
基金 国家自然科学基金(61462056 61472345 61462051 81560296 61662042) 云南省应用基础研究计划(2014FA028 2014FA023)
关键词 在线服务 评价准则 推荐系统 偏好 相似度 online service evaluation criterion recommendation system preference similarity
  • 相关文献

参考文献6

二级参考文献24

  • 1Resnick P ,Iacovou N ,Suchak M ,et al. Grouplens :an open architecture for collaborative filtering of netnews[ C]//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. New York,USA :Chapel Hill Press, 1994:175-186.
  • 2Delgado J, Ishii N. Memory-based weighted-majority prediction for recommender systems [ C ]//Proceedings of ACM SIGIR'99 Workshop on Recommender Systems. UC, USA : Berkeley Press, 1999 : 251- 257.
  • 3Marlin B. Modeling user rating profiles for collaborative filtering[ C ]//Advances in Neural Information Processing Systems. Toronto, Canada : MIT Press, 2003.
  • 4Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms [ C ]//Proceedings of the 10th Internation Conference on World Wide Web. New York:ACM ,2001:285-295.
  • 5Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems [ J ]. Computer, 2009,42(8) :30-37.
  • 6Xu J A, Araki K. A SVM-based personal recommendation system for TV programs [ C ]//Proceedings of Conference on Multi- Media Modeling. Beijing : IEEE, 2006:4.
  • 7Nikovski D, Kulev V. Induction of compact decision trees for personalized recommendation [ C ]//Proceedings of the 2006 ACM Symposium on Applied Computing. Dijon, France: ACM, 2006: 575-581.
  • 8Sarwar B, Karypis G, Konstan J A, et al. Application of dimensionality reduction in recommender system-a case study [ R ]. Minneapolis : Minnesota Univ Minneapolis Dept of Computer Science, 2000.
  • 9Wang Z, Wang Y, Wu H. Tags meet ratings : improving collaborative filtering with tag-based neighborhood method [ C ]//Pro- ceedings of the Workshop on Social Recommender Systems. Hongkong, China: ACM,2010.
  • 10Ji H, Li J, Ren C, et al. Hybrid collaborative filtering model for improved recommendation [ C ]//2013 IEEE International Con- ference on Service Operations and Logistics, and Informatics(SOLI). Dongguan :IEEE, 2013:142-145.

共引文献191

同被引文献33

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部