期刊文献+

Surface Wave Group Velocity Tomography Imaging from Ambient Noise for Fujian Province and Its Adjacent Areas 被引量:1

Surface Wave Group Velocity Tomography Imaging from Ambient Noise for Fujian Province and Its Adjacent Areas
下载PDF
导出
摘要 Two-month continuous waveforms of 108 broadband seismic stations in Fujian Province and its adjacent areas are used to compute noise cross-correlation function(NCF). The signal quality of NCF is improved via the application of time-frequency phase weighted stacking. The Rayleigh and Love waves group velocities between 1 s-20 s are measured on the symmetrical component of the NCF with the multiple filter method. More than 5,000 Rayleigh wave dispersion curves and about 4,000 Love wave dispersion curves are obtained and used to invert for group velocity maps. This data set provides about 50 km resolution that is demonstrated with checkerboard tests. Considering the off great circle effect in inhomogeneous medium, the ray path is traced based on the travel time field computed with a finite difference method. The inverted group velocity maps show good correlation with the geological features in the upper and middle crust. The Fuzhou basin and Zhangzhou basin showed low velocity on the short period group velocity maps. On the long period group velocity maps, the low velocity anomaly in the high heat flow region near Zhangzhou and clear velocity contrast across the Zhenghe-Dapu faults, which suggests that the Zhenghe-Dapu fault might be a deep fault. Two-month continuous waveforms of 108 broadband seismic stations in Fujian Province and its adjacent areas are used to compute noise cross-correlation function(NCF). The signal quality of NCF is improved via the application of time-frequency phase weighted stacking. The Rayleigh and Love waves group velocities between 1 s-20 s are measured on the symmetrical component of the NCF with the multiple filter method. More than 5,000 Rayleigh wave dispersion curves and about 4,000 Love wave dispersion curves are obtained and used to invert for group velocity maps. This data set provides about 50 km resolution that is demonstrated with checkerboard tests. Considering the off great circle effect in inhomogeneous medium, the ray path is traced based on the travel time field computed with a finite difference method. The inverted group velocity maps show good correlation with the geological features in the upper and middle crust. The Fuzhou basin and Zhangzhou basin showed low velocity on the short period group velocity maps. On the long period group velocity maps, the low velocity anomaly in the high heat flow region near Zhangzhou and clear velocity contrast across the Zhenghe-Dapu faults, which suggests that the Zhenghe-Dapu fault might be a deep fault.
出处 《Earthquake Research in China》 CSCD 2019年第1期52-61,共10页 中国地震研究(英文版)
基金 sponsored by the Youth Foundation of Fujian Earthquake Agency(Y201710) the Basic Research Fund of the Institute of Earthquake Forecasting,China Earthquake Administration(2015IES010302)
关键词 Fujian AMBIENT noise Surface WAVE GROUP VELOCITY TOMOGRAPHY IMAGING Fujian Ambient noise Surface wave group velocity Tomography imaging
  • 相关文献

参考文献13

二级参考文献167

共引文献315

同被引文献6

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部