期刊文献+

不同功能基团对氧化石墨烯生物相容性影响的研究

Effects of different functional groups on biocompatibility of Graphene oxide
下载PDF
导出
摘要 分别以3-氨丙基三乙氧基硅烷、氨基-β-环糊精、牛血清白蛋白作为修饰剂,通过水热法合成了3种不同修饰分子的石墨烯材料。然后通过透射电子显微镜、红外光谱、表面电势等手段对其结构和功能进行表征,并且通过CCK-8实验对其体外细胞相容性进行了探究。试验结果表明,不同功能基团修饰的石墨烯材料对Hela细胞和MDA-MB-231细胞具有不同的生物相容性。其中GO-APS生物相容性较差,GO-BSA生物相容性最好,该研究为后续进一步功能化修饰及其成为理想的药物载体打下基础。 In this paper,oxide Graphene(GO)materials were synthesized by hydrothermal method.Three different molecules(3-Aminopropyltriethoxysilane(APS),amino-β-cyclodextrin(β-CDs),and bovine serum albumin(BSA))were used to modify its surface,respectively.The structures and properties of functionalized GO were characterized by transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FTIR),and Zeta potential analyzer(Zeta).The cell compatibility in vitro was investigated by CCK-8 assay.Cell viability studies show that Graphene materials modified with different functional groups have different biocompatibility to Hela cells and MDA-MB-231 cells.Among them,GO-APS has poor biocompatibility and GO-BSA has the best biocompatibility,which lays the foundation for further functional modification and its ideal drug carrier.
作者 王丽丽 黄庆利 WANG Lili;HUANG Qingli(Department of Clinical Medicine,Xuzhou Medical University,Xuzhou 221004,China;Basic Medical School of Xuzhou Medical University,Xuzhou 221004)
出处 《生物医学工程研究》 2019年第1期90-94,共5页 Journal Of Biomedical Engineering Research
基金 江苏省自然科学基金资助项目(BK20150438) 江苏高校品牌专业建设工程一期项目(PPZY2015B161)
关键词 氧化石墨烯 纳米材料 药物载体 表面修饰 细胞相容性 Graphene oxide Nanomaterials Drug carrier Surface modification Cell compatibility
  • 相关文献

参考文献10

二级参考文献122

  • 1Shuai Zhang,Kai Yang,Zhuang Liu.Carbon nanotubes for in vivo cancer nanotechnology[J].Science China Chemistry,2010,53(11):2217-2225. 被引量:5
  • 2Pilger FRANK.Poly(ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy[J].Science China Chemistry,2010,53(11):2265-2271. 被引量:8
  • 3白春礼,赵宇亮.关注“纳米安全”[J].科技潮,2005(7):30-31. 被引量:7
  • 4许金钩,王尊本.荧光分析法[M],北京:科学出版社,2006
  • 5Sun Qihang, Radosz M, Shen Youqin. Challenges in design of translational nanocarriers[J]. Journal of Controlled Release, 2012, 164(2): 156-169.
  • 6Davis M E, Zhuo Chen, Shin D M. Nanoparticle therapeutics: An emerging treatment modality for cancer[J]. Nature Reviews Drug Discovery, 2008, 7(9): 771-782.
  • 7Roco M C. Nanotechnology: Convergence with modern biology and medicine[J]. Current Opinion in Biotechnology, 2003, 14(3): 337-346.
  • 8Suri S S, Fenniri H, Singh B. Nanotechnology-based drug delivery systems[J]. Journal of Occupational Medicine and Toxicology, 2007, 2: 16.
  • 9Esfand R, Tomalia D A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications[J]. Drug Discovery Today, 2001, 6(8): 427- 436.
  • 10Sun Huanli, Guo Bingnan, Cheng Ru, et al. Biodegradable micelles with sheddable poly(ethylene glycol) shells for trig- gered intraeellular release of doxorubicin[J]. Biomaterials, 2009, 30(31): 6358-6366.

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部