期刊文献+

基于点云几何特征的错误匹配点对剔除算法 被引量:2

Elimination Algorithm of Mismatched Point Pairs Based on Point Cloud Geometric Feature
下载PDF
导出
摘要 针对点云配准过程中存在错误匹配点对的问题,提出一种基于点云几何特征的双阈值剔除算法。依据点云几何特征在刚体变换过程中的平移旋转不变性,在初始匹配点集基础上,借助k近邻方法选取各查询点的近邻点并构成三点对,根据点间距离不变特性完成点对的初步筛选。在此基础上,采用曲面变分描述该三点对所在局部区域的几何特征,通过分析三点对的协方差矩阵,完成匹配点的最终筛选。实验结果表明,该方法可以有效剔除错误匹配点,且具有较高的配准精度。 Aiming at the problem of mismatched point pairs in the point cloud registration process,a double threshold elimination algorithm based on point cloud geometry feature is proposed.According to the geometric characteristics of the point cloud,the translational rotation invariance is obtained during the rigid body transformation process.On the basis of the initial matching point set,the nearest neighbor points of each query point are selected by the k-nearest neighbor method to form a three-point pair.According to the characteristics of the distance between points,the initial pairing is completed.On this basis,the geometrical features of the local region of the three-point pair are described by surface variation,and the final screening of the matching points is completed by analyzing the covariance matrix of the three-point pair.Experimental results show that the method can effectively eliminate the wrong matching points and has higher registration accuracy.
作者 张少杰 马银中 赵海峰 ZHANG Shaojie;MA Yinzhong;ZHAO Haifeng(School of Computer Science and Technology,Anhui University,Hefei 230601,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第4期163-168,共6页 Computer Engineering
基金 安徽省教育厅自然科学研究重点项目(KJ2017A016 KJ2016A040)
关键词 三维点云 双阈值 剔除算法 点间距离 曲面变分 近似全等三点对 three-dimensional point cloud double threshold elimination algorithm distance between points surface variation approximate congruent three-points pair
  • 相关文献

参考文献3

二级参考文献20

  • 1孙世为,梁培志,李志刚.基于曲率RGB的多视点云拼合方法[J].中国机械工程,2005,16(10):882-884. 被引量:4
  • 2BESL P J,MCKAY ND. A method for registration of 3Dshapes[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 1992, 14(2): 239-256.
  • 3SHARP GC, LEE S W, WEHE D K. ICP registrationusing invariant features[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2002,24(1): 90-102.
  • 4RUSINKIEWICZ S,LEVOY M. Efficient variants of theICP aIgorithm[C]// Proceedings of the Third Intl. Conf.on 3D Digital Imaging and Modeling,May 28 - June 1,2001,Quebec. Canada: IEEE Computer Society Press,2001: 145-153.
  • 5POTTMANN H,LEOPOLDSEDER S, HOFER M.Registration without ICP[J]. Computer Vision and ImageUnderstanding, 2004,95(1): 54-71.
  • 6MITRA N J,NGUYEN A, GUIBAS L. Estimatingsurface normals in noisy point cloud data[J]. InternationalJournal of Computational Geometry & Applications,2004, 23(1): 261-276.
  • 7RUSU R B, BLODOW N,BEETZ M. Fast point featurehistograms(FPFH) for 3D registration[C]// IEEEInternational Conference on Robotics and Automation,May 12-17, 2009, Kobe,Japan. 2009: 3212-3217.
  • 8MARK P, RICHARD K, MARKUS G Multi-scalefeature extraction on point-sampled surfaces[J].Computer Graphics Forumr 2003,22(3): 281-289.
  • 9刘伟军,孙玉文.逆向工程:原理、方法及应用[M].北京:机械工业出版社,2009.
  • 10HU M K. Visual pattern recognition by momentinvariants[J]. IEEE Transactions on Information Theory,1962,8(2): 179-187.

共引文献36

同被引文献21

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部