期刊文献+

卷积神经网络池化方法研究 被引量:12

Research on Pooling Method of Convolution Neural Network
下载PDF
导出
摘要 为解决随机池化中零元素概率为0导致不能被选择的问题,提出一种改进的混合概率随机池化方法。将池化域中的元素去重复并按升序排序,然后加上对应次序的幂次,得到元素的权重概率。在此基础上,根据多项分布取样给出池化值。在数据集MNIST、CIFAR-10、CIFAR-100上进行实验,结果表明,该方法在3种数据集上的分类准确率分别为99.50%、72.25%、39.05%,相较于传统池化方法具有较好的分类效果与稳健性。 In order to solve the problem that the probability of zero elements in random pooling is zero,it cannot be selected.An improved hybrid probability stochastic method is proposed.The elements in the pooled domain are deduplicated and sorted in ascending order,and then the power of the corresponding order is added to obtain the weight probability of the element.On this basis,the pooling value is given based on the multi-distribution sampling.Experimental results on the datasets MNIST,CIFAR-10,and CIFAR-100 show that the method in the classification accuracy of the three datasets is 99.50 %,72.25 %,and 39.05 %,respectively.Compared with the traditional pooling method,the method has good classification effect and robustness.
作者 周林勇 谢晓尧 刘志杰 任笔墨 ZHOU Linyong;XIE Xiaoyao;LIU Zhijie;REN Bimo(Key Laboratory of Information and Computing Science of Guizhou Province,Guizhou Normal University,Guiyang 550001, China;School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guiyang 550025,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第4期211-216,共6页 Computer Engineering
基金 国家自然科学基金(U1631132)
关键词 卷积神经网络 深度学习 池化方法 多项分布 图像分类 Convolutional Neural Network(CNN) deep learning pooling method multinomial distribution image classification
  • 相关文献

参考文献3

二级参考文献34

  • 1芮挺,沈春林,丁健,张金林.基于主分量分析的手写数字字符识别[J].小型微型计算机系统,2005,26(2):289-292. 被引量:22
  • 2洪留荣,王耀才.应用图论和基元方向信息的手写数字识别[J].计算机工程,2006,32(3):34-36. 被引量:8
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.

共引文献652

同被引文献79

引证文献12

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部