期刊文献+

基于对抗自编码网络的水利数据补全方法 被引量:3

Water Conservancy Data Completion Method Based on Adversarial Autoencoders Network
下载PDF
导出
摘要 在大规模监测系统中,监测点失效会导致数据缺失,从而影响数据分析结果的准确性。为此,提出一种对抗自编码的水利数据补全方法。利用自编码器构造生成网络,并提取监测点的数据特征,将其与训练好的判别网络进行对抗,最终补全待修复的监测数据。实验结果表明,与基于图正则化局部子表示方法相比,该方法具有较高的补全精确度,且均方误差较小,能够有效地重构监测数据。 In large-scale monitoring systems,failure of monitoring points can lead to data loss,which affects the accuracy of data analysis results.Therefoer,a method for complementing water conservancy data against self-encoding is proposed.The self-encoder is used to construct the network to extract the data features of the monitoring points,and then compete with the trained discriminant network to finally complete the monitoring data to be repaired.The experimental results show that compared with the graph-based regularized local sub-representation method,the proposed method has higher accuracy and less mean square error,which can effectively reconstruct the monitoring data.
作者 季琳雅 吕鑫 陶飞飞 曾涛 JI Linya;LV Xin;TAO Feifei;ZENG Tao(Department of Computer and Information,Hohai University,Nanjing 211100,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第4期307-310,共4页 Computer Engineering
基金 国家重点研发计划(2016YFC0400910)
关键词 水利监测数据 数据缺失与补全 对抗自编码网络 对抗正则化 重构误差 water conservancy monitoring data data missing and completion Adversarial Autoencoders(AAE) network adversarial regularization reconstruction error
  • 相关文献

参考文献4

二级参考文献46

  • 1王喜春,孙志禹.基于大数据的水利水电云GIS平台概述[J].人民长江,2013,44(S1):182-184. 被引量:11
  • 2Cullar D, Estrin D, Strvastava M. Overview of sensor networks[J]. IEEEComputer, 2004, 37(8): 41-49.
  • 3Madden S, Franklin M J, Hellerstein J M, et al. The design of an acquisitional query processor for sensor networks [C]// Proc of the 2003 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2003:491-502.
  • 4Manjhi A, Nath S, Gibbons P B. Tributaries and deltas: Efficient and robust aggregation in sensor network streams [C ]//Proc of the 2005 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2005:287-298.
  • 5Silberstein A, Munagala K, Yang J. Energy-efficient monitoring of extreme values in sensor networks [C] //Proc of the 2006 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2006:169-180.
  • 6Considine J, Li F, Kollios G, et al. Approximate aggregation techniques for sensor databases [C] //Proc of the 20th Int Conf on Data Engineering. Washington: IEEE Computer Society, 2004:449-460.
  • 7Deshpande A, Guestrin C, Madden S, et al. Model-driven data acquisition in sensor networks [C]//Proc of the 30th Int Conf on Very Large Data Bases. New York: ACM, 2004: 588-599.
  • 8Deshpande A, Guestrin C, Hong W, et al. Exploiting correlated attributes in axquisitional query processing [C]// Proc of the 21st Int Conf on Data Engineering. Washington: IEEE Computer Society, 2005:143-154.
  • 9Chu D, Deshpand A, Hellerstein J M, et al. Approximate data collection in sensor networks using probabilistic models [C] //Proc of the 22nd Int Conf on Data Engineering. Washington: IEEE Computer Society, 2006:48.
  • 10Madden S. Intel Berkeley research lab data [OL]. [2006-08- 08]. http://berkeley. intel-research. net/labdata.

共引文献44

同被引文献12

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部