期刊文献+

Exploratory study of betavoltaic battery using ZnO as the energy converting material 被引量:2

Exploratory study of betavoltaic battery using ZnO as the energy converting material
下载PDF
导出
摘要 Third-generation-semiconductor zinc oxide is utilized as an energy converting material in a betavoltaic battery, where 0.06 Ci^(63) Ni and 8 Ci^(147) Pm are used as the beta sources. Based on a Monte Carlo simulation, the full scales of the devices are derived as 17 and 118 lm,respectively, for both sources. The influences of semiconductor doping concentrations on the electrical properties of the devices are analyzed. For a typical doping concentration N_A= 10^(17) cm^(-3), N_D= 10^(16) cm^(-3), the conversion efficiencies are 7.177% and 1.658%, respectively, using63 Ni and147 Pm sources. The calculation results of energy deposition in materials for the two sources show that the doping concentrations drop to 1 × 10^(13)–5×10^(14) cm^(-3) and 1 × 10^(12)–5×10^(13), and accordingly, the energy conversion efficiencies rise to 14.212% and 18.359%, respectively. Third-generation-semiconductor zinc oxide is utilized as an energy converting material in a betavoltaic battery, where 0.06 Ci^(63) Ni and 8 Ci^(147) Pm are used as the beta sources. Based on a Monte Carlo simulation, the full scales of the devices are derived as 17 and 118 lm,respectively, for both sources. The influences of semiconductor doping concentrations on the electrical properties of the devices are analyzed. For a typical doping concentration N_A= 10^(17) cm^(-3), N_D= 10^(16) cm^(-3), the conversion efficiencies are 7.177% and 1.658%, respectively, using63 Ni and147 Pm sources. The calculation results of energy deposition in materials for the two sources show that the doping concentrations drop to 1 × 10^(13)–5×10^(14) cm^(-3) and 1 × 10^(12)–5×10^(13), and accordingly, the energy conversion efficiencies rise to 14.212% and 18.359%, respectively.
机构地区 College of Physics
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第4期62-69,共8页 核技术(英文)
基金 supported by the National Major Scientific Instruments and Equipment Development Projects(No.2012YQ240121) the National Natural Science Foundation of China(No.11075064)
关键词 RADIOISOTOPE BETA voltaic effect Zinc oxide Nuclear BATTERY MONTE Carlo simulation Radioisotope Beta voltaic effect Zinc oxide Nuclear battery Monte Carlo simulation
  • 相关文献

参考文献5

二级参考文献125

共引文献57

同被引文献9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部