期刊文献+

30CrMnSi钢马氏体亚结构对力学性能的影响 被引量:2

Effect of martensitic substructure on mechanical properties of 30CrMnSi steel
原文传递
导出
摘要 通过3种不同的工艺对30CrMnSi钢进行热处理,获得不同尺度的马氏体多层次组织。结果表明:奥氏体晶粒大小依赖于加热温度,温度越高,奥氏体晶粒越粗大,马氏体束和块的尺寸也随着原奥氏体的粗大而变大,并且马氏体束和块尺寸与奥氏体晶粒尺寸呈较好的线性关系,表明马氏体束和块的尺寸受原奥氏体晶粒尺寸的控制。EBSD分析结果表明,原奥氏体晶粒尺寸决定了马氏体束和块的尺寸,原奥氏体晶粒越粗大,马氏体束和块越大,细小的各结构单元强化了材料,提高了材料的塑性。 In order to obtain different dimension multilayer martensite microstructure,30 CrMnSi steel was processed by three different heat treatment processes. The results show that the austenite grain size depends on the heating temperature,the austenite grain size increases with the increase of quenching temperature,the size of martensite packets and blocks also increase with the increase of prior austenite grain size,and a better linear relationship exists between the packet,block and prior austenite,which indicate that the size of martensite packets and blocks are determined by prior austenite grain size. EBSD analysis results show that the original austenite grain size affects the size of martensite packets and blocks,the size of martensite packets and blocks is proportional to that of original austenite grain. The fine microstructure strength the initial material and improve the ductility.
作者 袁玉红 郑继明 伍权 Yuan Yuhong;Zheng Jiming;Wu Quan(College of Mechanical and Electrical Engineering,Guizhou Normal University,Guiyang Guizhou 550001,China)
出处 《金属热处理》 CAS CSCD 北大核心 2019年第3期1-5,共5页 Heat Treatment of Metals
基金 贵州省科技厅社会发展科技攻关项目(黔科合SY字(2013)3097号)
关键词 30CRMNSI钢 原奥氏体晶粒 大小角度界面 强度 塑性 30CrMnSi steel prior austenite grain high and low angle boundary strength plasticity
  • 相关文献

参考文献2

二级参考文献15

  • 1YAO Zhong-kai. Structural Transformation of Steel[M]. Beijing: Mechanical Industry Press, 1980 (in Chinese).
  • 2Maki T, Tsuzaki K, Tamura I. The Morphology of Microstructure Composed of Lath Martensites in Steels [J]. Transactions ISIJ (Transactions the Iron and Steel Institute of Japan), 1980, 20(4): 207.
  • 3Morito S, Tanaka H, Konishi R, et al. The Morphology and Crystallography of Lath Martensite in Fe-C Alloys [J]. Acta Materialia, 2003, 51(6) : 1789.
  • 4Swarr T, Krauss G. The Effect of Structure on the Deformation of As-Quenched and Tempered Martensite in an Fe-0. 2pct C Alloy [J]. Metallurgical Transactions, 1976, 7A(1): 41.
  • 5Morito S, Yoshida H, Maki T, et al. Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels [J]. Materials Science and Engineering, 2006, 438-440A: 237.
  • 6Tomita Y, Okabayashi K. Effect of Microstructure on Strength and Toughness of Heat-Treated Low Alloy Structural Steels [J]. Metallurgical Transactions, 1986, 17A(7): 1203.
  • 7WANG Chun-fang, WANG Mao-qiu, SHI Jie, et al. Effect of Microstructure on the Toughness of Low Alloy Martensitic Steel [J]. Scripta Materialia, 2008, 58(6): 492-495.
  • 8Inoue T, Matsuda S, Okamura Y, et al. The Fracture of a Low Carbon Tempered Martensite [J]. Transactions of JIM, 1970, 11(1): 36.
  • 9LePera F S. Improved Etching Technique to Emphasize Martensite and Bainite in High-Strength Dual-Phase Steel [J]. J Metall, 1980, 32: 38.
  • 10Girault E, Jacques P, Harlet Ph, et al. Metallographie Methods for Revealing the Multiphase Microstructure of TRIP-Assisted Steels [J]. Materials Characteristic, 1998, 40(2) : 111.

共引文献25

同被引文献31

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部