期刊文献+

想象多力度单侧手运动的脑电信号分类研究

Research on Single Hand Imagination of Different Strength EEG Classification
下载PDF
导出
摘要 目的传统脑机接口实验范式多为左右手运动想象,无力度分级,命令单一,为增加脑机接口命令数,使中风患者在康复期间设计获得更好的治疗方案,设计了想象三种力度下的单侧手运动实验并对其进行分类。方法 9名受试者被要求想分别以三种力度(50%、30%、10%最大自主收缩力)握紧单侧手,同时记录脑电及肌电信号,对脑电信号预处理后进行空间滤波和特征提取,再对处理后的数据进行带通滤波并提取特征,利用线性判别分析作为分类器。结果\结论采用两级特征提取分类方法,平均分类正确率达到72.4%,证明通过分析想象不同力度单侧手运动的脑电信号能够扩展脑机接口命令数。 Aim The traditional brain-computer interface experimental paradigm is mostly for left and right hand movement imagination, no strength distinction, Therefore the order is single, In order to increase the number of brain-computer interface commands, so that stroke patients can get better treatment plans during rehabilitation. a single-handed hand movement experiment with three strengths was designed and classified. Method Nine subjects were asked to imagine clenching their right hands with three different force loads(50% maximum voluntary contraction(MVC), 30%MVC and 10% MVC) and recorded their EEG and EMG signals. After preprocessing the EEG signal, spatial filtering and feature extraction are performed, then the processed data is bandpass filtered and features are extracted, and LDA is used as a classifier. Results\Conclusion Using the two-level feature extraction classification method, the average classification accuracy rate reached 72.4%, which proves that the number of brain-computer interface commands can be extended by analyzing the EEG signals of unilateral hand movements with different strengths.
作者 丁建清 杨硕 王磊 张天恒 Ding Jianqing;Yang Shuo;Wang Lei;Zhang Tianheng(State Key Laboratory of Reliability and Intelligence of Electrical Equipment(HeBei University of Technology), Tianjin 300130, China;Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province (He Bei University of Technology), Tianjin 300130, China)
出处 《生命科学仪器》 2019年第1期41-46,共6页 Life Science Instruments
基金 国家自然科学基金(51877067 51737003 51707054 51707055) 河北省高等学校自然科学基金(QN2016097)
关键词 脑电 肌电 线性判别分类 脑机接口 Electroencephalogram(EEG) Electromyography(EMG) Linerar Discriminant Analysis(LDA) Brain computer Interface (BCI)
  • 相关文献

参考文献3

二级参考文献31

  • 1游荣义,陈忠.基于小波变换的盲信号分离的神经网络方法[J].仪器仪表学报,2005,26(4):415-418. 被引量:13
  • 2李同磊,刘伯强,李可,于兰兰.基于脑电信号的手指动作识别[J].山东科学,2006,19(1):1-5. 被引量:2
  • 3Wolpaw JR, Birbaumer N, Heetderks W, et al. Brain-computer interface technology:a review of the first international meeting [J ]. IEEE Trans Rehabil Eng, 2000, 8(2) :164- 173.
  • 4Quadrianto N, GuanCunTai, Dat TH, et al. Sub-band Common Spatial Pattern (SBCSP) for Brain-Computer Interface[A] In: 2007 3rd International IEEE/EMBS Conference on Neural Engineering [C]. Piscataway, NJ, USA:IEEE, 2007. 219- 225.
  • 5Peters, BO, Pfurtscheller G., Flyvbjerg H. Automatic differentiation of multichannel EEG signals [ J]. Transactions on Biomedical Engineering 2001,48(1) : 111 - 116.
  • 6Wu Wei, Gao Xiaorong, Gao Shangkai. One-versus-the-best (OVR) algorithm: an extention of common spacial patterns(CSP) algorithm to muti-class case [ A ]. In : Proceedings of 27th Annual International Conference of the Engineering in Medicine and Biology Society,[C]. Piscataway, NJ, USA: IEEE-EMBS, 2005, 2387- 2390.
  • 7A. Schloegl, K. Lugger, G. Pfurtscheller. Using Adaptive Autoregressive Parameter for a Brain-Computer-Interface experiment [A]. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [ C ], Piscataway, NJ, USA: IEEE, 1997.1533-1535.
  • 8Keim, ZA, Aunon JI. A new mode of communication between man and his surroundings[J]. IEEE Trans on Biomedical Engineering, 1990,31(12) : 1209 - 1214.
  • 9Wang Yijun, Gao Shangkai, Gao Xiaorong. Common spacial pattern method for charmel selection in motor imagery based brain-computer imerface [ A ]. In: Proceedings of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [ C ]. Piscataway, N J, USA: IEEE,2005. 5392 - 5395.
  • 10Molina G. G.. BCI adaptation using incremental-SVM learning[ A]. In: Proceedings of 3rd International IEEE EMBS Conference on Neural Engineering[C]. Piscataway, N J, USA: IEEE,2007. 337 - 341.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部