摘要
目的传统脑机接口实验范式多为左右手运动想象,无力度分级,命令单一,为增加脑机接口命令数,使中风患者在康复期间设计获得更好的治疗方案,设计了想象三种力度下的单侧手运动实验并对其进行分类。方法 9名受试者被要求想分别以三种力度(50%、30%、10%最大自主收缩力)握紧单侧手,同时记录脑电及肌电信号,对脑电信号预处理后进行空间滤波和特征提取,再对处理后的数据进行带通滤波并提取特征,利用线性判别分析作为分类器。结果\结论采用两级特征提取分类方法,平均分类正确率达到72.4%,证明通过分析想象不同力度单侧手运动的脑电信号能够扩展脑机接口命令数。
Aim The traditional brain-computer interface experimental paradigm is mostly for left and right hand movement imagination, no strength distinction, Therefore the order is single, In order to increase the number of brain-computer interface commands, so that stroke patients can get better treatment plans during rehabilitation. a single-handed hand movement experiment with three strengths was designed and classified. Method Nine subjects were asked to imagine clenching their right hands with three different force loads(50% maximum voluntary contraction(MVC), 30%MVC and 10% MVC) and recorded their EEG and EMG signals. After preprocessing the EEG signal, spatial filtering and feature extraction are performed, then the processed data is bandpass filtered and features are extracted, and LDA is used as a classifier. Results\Conclusion Using the two-level feature extraction classification method, the average classification accuracy rate reached 72.4%, which proves that the number of brain-computer interface commands can be extended by analyzing the EEG signals of unilateral hand movements with different strengths.
作者
丁建清
杨硕
王磊
张天恒
Ding Jianqing;Yang Shuo;Wang Lei;Zhang Tianheng(State Key Laboratory of Reliability and Intelligence of Electrical Equipment(HeBei University of Technology), Tianjin 300130, China;Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province (He Bei University of Technology), Tianjin 300130, China)
出处
《生命科学仪器》
2019年第1期41-46,共6页
Life Science Instruments
基金
国家自然科学基金(51877067
51737003
51707054
51707055)
河北省高等学校自然科学基金(QN2016097)
关键词
脑电
肌电
线性判别分类
脑机接口
Electroencephalogram(EEG)
Electromyography(EMG)
Linerar Discriminant Analysis(LDA)
Brain computer Interface (BCI)