期刊文献+

基于数据挖掘BLE指纹室内定位设计与实现 被引量:4

Design and Implementation of BLE Fingerprint Indoor Positioning Based on Data Mining
下载PDF
导出
摘要 在复杂的室内环境中,为了满足高精度室内定位的需求,该文提出了一种基于BLE指纹技术的高精度室内蓝牙定位方法。该方法利用iBeacon不需要直流供电直接部署、体积小、功耗低等特性,以低功耗蓝牙智能手机终端作为指纹采集系统和定位媒介系统,通过获取iBeacon信号强度参数,建立蓝牙信号强度值离线指纹库。在线定位阶段,可通过手机终端获取附近iBeacon信号强度信息,与指纹库中的指纹信息进行对比。再通过使用位置指纹定位算法进行处理,最终确定被定位目标的位置信息。从系统测试结果来看,该系统的定位精度可以达到亚米级,可以满足室内环境下基于位置的服务基本需求。 In order to meet the needs of high-precision indoor positioning in complex indoor scenes,the paper proposes a high-precision indoor Bluetooth positioning method based on BLE fingerprint technolotgy. The method uses the iBeacon without DC power supply for direct deployment,small size,low power consumption,etc.,and uses a low-power Bluetooth smart phone terminal as a fingerprint acquisition system and a positioning media system. The Bluetooth signal strength offline fingerprint database is established by obtaining the iBeacon signal strength parameter. In the online positioning phase,the nearby iBeacon signal strength information can be obtained by the mobile terminal and compared with the fingerprint information in the fingerprint database. Then,by using the location fingerprint location algorithm,the location information of the target is finally determined. From the system test results,the positioning accuracy of the system can reach the sub-meter level,which can meet the basic needs of location-based services in the indoor environment.
作者 康明涛 张峰 梁源 赵黎 KANG Ming-tao;ZHANG Feng;LIANG Yuan;ZHAO Li(School of Electronic and Information Engineering,Xi’an Technological University,Xi’an 710021,China)
出处 《自动化与仪表》 2019年第4期95-99,共5页 Automation & Instrumentation
关键词 数据挖掘 BLE 指纹库 ANDROID KNN data mining BLE fingerprint library Android KNN
  • 相关文献

参考文献6

二级参考文献55

  • 1潘强,张宏祥,彭元敏,郭斌,郭季成.放射源在线监控系统设计与应用[J].环境工程,2012,30(S2):340-342. 被引量:4
  • 2孙佩刚,赵海,罗玎玎,张晓丹,尹震宇.智能空间中RSSI定位问题研究[J].电子学报,2007,35(7):1240-1245. 被引量:75
  • 3汤丽 徐玉滨 周牧等.基于K近邻算法的WLAN室内定位技术研究.计算机科学,2009,.
  • 4Smith A,Balakrishnan H,Goraczko M,et al. Tracking moving devices with the cricket location system [C]// Proceedings of the 2nd ACM International Conference on Mobile Systems, Applications, and Services. USA:[s. n.], 2004:190-202.
  • 5SUN Guo-lin,CHEN Jie,GUO Wei,et al. Signal processing techniques in network-aided positioning: a survey of state-of- the-art positioning designs[J]. IEEE Signal Processing Magazine, 2005,22(4):12-23.
  • 6Marko H,Juha L,Hannu I,et al. Using calibration in RSSI- based location tracking System [C]// Proceedings of the 5th World Multiconference on Circuits,Systems,Communications and Computers. [S. l.]:IEEE Press, 2001:461-465.
  • 7Hatami A, Pahlavan K. Comparative statistical analysis of indoor positioning using empirical data and indoor radio channel models [C]//Proceedings of IEEE CCNC 2006. Las Vegas:[s. n.],2006:1018-1022.
  • 8SUN Yong-liang,XU Yu-bin,MA Lin,et al. KNN-FCM hybrid algorithm for indoor location in WLAN[C]//Proceedings of the 2nd International Conference on Power Electronics and Intelligent Transportation System. Shenzhen:[s.n.] ,2009:251- 254.
  • 9ZHANG Yu-dong,WU Le-nan. Artificial bee colony for two dimensional protein folding [J]. Advances in Electrical Engineering Systems ,2012,1 ( 1 ):19-23.
  • 10Shinsuke Hara,Daisuke Anzai.Experimental Performance Comparison of RSSI-and TDOA-Based Location Estimation Methods[C].//67th IEEE Vehicular Technology Conference,2008.Singapore.6.2008:2651-2655.

共引文献379

同被引文献25

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部