期刊文献+

氟化钠对Li_(1.3)Ni_(0.14)Mn_(0.68)Co_(0.07)O_2正极材料的电化学性能的影响 被引量:3

Electrochemical Performance of Li_(1.3)Ni_(0.14)Mn_(0.68)Co_(0.07)O_2 Cathode Treated by using a Sodium Fluoride Solution
下载PDF
导出
摘要 采用不同浓度氟化钠溶液处理自制的Li_(1.3)Ni_(0.14)Mn_(0.68)Co_(0.07)O_2材料,制备了系列处理样.通过X射线衍射仪、扫描电镜、红外光谱、交流阻抗、循环伏安和充放电循环等方法研究了样品的物相结构及电化学性能.结果表明,Li_(1.3)Ni_(0.14)Mn_(0.68)Co_(0.07)O_2与氟化钠摩尔比为1 1.50条件下制备的处理样品的电化学性能最优.在2.5~4.6 V电压区间和1C倍率电流下,未处理和经处理样品第1循环的放电容量分别为71 mAh/g和128.6 mAh/g,第30循环的放电容量分别为173.9 mAh/g和193.3 mAh/g.处理样品的阻抗明显减小,样品表层价键有所增强,从而改善了样品的电化学性能. A series of treated samples prepared by using the as-prepared Li1.3Ni0.14Mn0.68Co0.07O2 and sodium fluoride solution with various concentration.X-ray powder diffraction,scanning electron microscopy,infrared spectrum,Electrochemical impedance,cyclic voltammograms and charge-discharge tests were employed to investigate the structure and electrochemical performance of the treated samples.The results show that the treated optimal sample exhibits the best electrochemical performance among all samples while the molar ratio of Li1.3Ni0.14Mn0.68Co0.07O2 to sodium fluoride is 1:1.5.In the voltage range of 2.5 to 4.6 V and 1C rate,the discharge capacity of the untreated and treated optimal sample exhibits the 1st cycle capacity of 71 and 128.6 mAh/g,respectively;and the 30 th cycle capacity of 173.9 and 193.3 mAh/g.The charge-transfer resistance and polarization of the optimal sample significantly decreased,and the Ni-O,Co-O and Mn-O bond on the surface of the treated optimal sample enhanced,thereby the electrochemical performance of the sample improved.
作者 祖国晶 李秀华 余欣瑞 郭可可 生瑜 童庆松 ZU Guojing;LI Xiuhua;YU Xinrui;GUO Keke;SHENG Yu;TONG Qingsong(College of Chemistry and Materials,Fujian Nomal University,Fujian City 350007,China)
出处 《吉林化工学院学报》 CAS 2019年第3期92-96,共5页 Journal of Jilin Institute of Chemical Technology
基金 福建省科技厅高校产学合作项目(2016H6006)
关键词 固溶体 氟化钠 Li1.3Ni0.14Mn0.68Co0.07O2 放电性能 solid solution sodium fluoride Li1.3Ni0.14Mn0.68Co0.07O2 discharge performance
  • 相关文献

参考文献3

二级参考文献88

  • 1Thackeray M M, Kang S H, Johnson C S, et al. J. Mater. Chem., 200%17:3112-3125.
  • 2Kim J S, Johnson C S, Thackeray M M. Electrochem. Commun., 21102,4:205-209.
  • 3Kim J S, Johnson C S, Vaughey J T, et al. Chem. Mater., 2004,16:1996-2006.
  • 4Johnson C S, Li N, Lefief C, et al. Chem. Mater., 2008,20: 6095-6106.
  • 5Thackeray M M, Johnson C S, Vaughey J T, et al. Chem. Mater., 2005,15:2257-2267.
  • 6Johnson C S, Li N, Vaughey J T, et al. Electrochem. Commun., 2005,7:528-536.
  • 7Amalraj F, Kovaeheva D, Talianker M, et al. J. Electrochem. Soc., 2010,157(10):A 1121-A1130.
  • 8Tabuehi M, Nabeshima Y, Takeuehi T, et al. J. Power Sources, 2010,195(3):834-844.
  • 9wu Feng(吴峰), LI Ning(李宁), AN Ran(安然), et al. Trans. Beijing Inst. Technol.(Beijing Li@ng Daxue Xuebao), 2012, 32(1):1-11.
  • 10Numata K, Sakaki C, Yamanaka S. Chem. Lett., 1997,8:725-726.

共引文献14

同被引文献3

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部