摘要
Jacobi迭代法、Guass-Seidel迭代法和SOR迭代法是求解线性方程组的常用迭代方法.本文证明了系数矩阵严格次对角占优时,Jacobi迭代法、Guass-Seidel迭代法和SOR迭代法均收敛,并给出了相应的误差估计.通过比较三种迭代法的误差上界,指明Guass-Seidel迭代法的误差上界最小.
The Jacobi iterative method, Guass-Seidel iterative method, and SOR iterative method are commonly used in solving linear equations. When the coefficient matrix of a system of linear equations is strictly sub-diagonally dominant, we demonstrate that the Jacobi, Guass-Seider, and SOR iterative methods are all convergent. By comparing the upper bounds of error for the three iterative methods, we show that the upper bound of error for the Guass-Seidel iterative method is minimal.
作者
蔡静
CAI Jing(School of Mathematics, Southeast University, Nanjing 211189, China;College of Science, Huzhou University, Huzhou Zhejiang 313000, China)
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第2期1-6,55,共7页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11771076)
中国博士后基金(2016M601688)
关键词
线性方程组
迭代法
严格次对角占优
误差上界
linear equations
iterative method
strictly sub-diagonally dominant
error bounds