期刊文献+

具有临界Sobolev-Hardy项的拟线性p-重调和方程解的存在性 被引量:1

Existence of solutions for quasilinear p-biharmonic equations with critical Sobolev-Hardy terms
下载PDF
导出
摘要 为了研究一类带有Hardy项和多临界Sobolev-Hardy指数的拟线性p-重调和方程解的存在性,借助于Ekeland变分原理,给出上述问题解的存在性定理。首先,将方程对应的变分泛函定义在约束集M_η(通常称为Nehari流形)上,使得该泛函下方有界。其次,利用纤维映射将上述集合M_η划分为M_η^+,M_η~0和M_η^-等3部分,并分别研究每部分的性质,证明了M_η^+和M_η^-中泛函极小值的存在性。最后,利用隐函数定理,得到在参数满足一定条件下,存在极小化序列{u_n},满足(PS)_c条件,从而完成了该方程解的存在性的证明。所得结论可为判定解的结构和性质提供理论依据。 In order to study a class of quasilinear p-biharmonic equations with Hardy terms and multi-critical Sobolev-Hardy exponents, the existence theorem of the solutions to the above problem is established by means of the Ekeland variational principle. Firstly, to guarantee the variational functional is bounded from below, it is restricted on a set Mη(usually called Nehari manifold). Secondly, the set Mη is divided into three parts Mη+, M0+ and Mη- by using fibering maps. Moreover, the existence of minimum in Mη+ and Mη- is proved by studying the properties of the two subsets. Finally, by using implicit function theorem, it is found that there exists a minimizing sequence {un} making the(PS)c conditions hold when the parameters satisfy certain conditions. Therefore, the existence of the solutions to the problem is proved. The conclusions provide a theoretical basis for judging the structure and properties of the solutions.
作者 任艳 桑彦彬 REN Yan;SANG Yanbin(School of Science, North University of China, Taiyuan, Shanxi 030051, China)
出处 《河北科技大学学报》 CAS 2019年第2期119-124,共6页 Journal of Hebei University of Science and Technology
基金 山西省自然科学基金(201601D011003)
关键词 非线性泛函分析 临界Sobolev-Hardy项 拟线性p-重调和方程 EKELAND变分原理 解的存在性 nonlinear functional analysis critical Sobolev-Hardy terms quasilinear p-biharmonic equations Ekeland’s variational principle existence of the solution
  • 相关文献

参考文献4

二级参考文献23

  • 1康东升.一种奇异临界椭圆方程的非平凡解[J].数学物理学报(A辑),2006,26(5):716-720. 被引量:5
  • 2丁凌,唐春雷.具有Hardy-Sobolev临界指数的p-Laplacian方程解的存在性和多重性(英文)[J].西南大学学报(自然科学版),2007,29(4):5-10. 被引量:12
  • 3MinBo Yang,ZiFei Shen.Multiple nontrivial solutions for semi-linear elliptic equations with Hardy-Sobolev critical exponent[J].Acta mathematica sinica,Chinese series,2006,49:819-826.
  • 4Dongsheng Kang,Shuangjie Peng.Solutions for semilinear elli-ptic problems with critical Sobolev-Hardy exponents and Hardy potential[J].Applied Mathematics Letters,2005,18:1094-1100.
  • 5Jannelli E.The role played by space dimension in ellipticcritical problems[J].J Differential Equations,1999,156:407-426.
  • 6Cao Daomin,Peng Shuangjie.A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms[J].J Differential Equations,2003,193:424-434.
  • 7Ferrer A,Gazzola F.Existence of solutions for singular critical growth semilinear elliptic equations[J].J Differential Equatio-ns,2001,177:494-522.
  • 8Chen Jiangqiang.Existence of solutions for a nonlinear PDE with an inverse square potential[J].J Differential Equations,2003,197:497-519.
  • 9Cao Daomin,Han Pigong.Solutions for semilinear elliptic equations with critical exponents and Hardy potential[J].J Differential Equations,2004,205:521-537.
  • 10Brezis H,Lieb E.A relation between pointwise convergence of functions and convergence of integrals[J].Proc Amer Math Soc,1983,88:486-490.

共引文献5

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部