期刊文献+

激光扫描数据的密集噪声剔除方法 被引量:14

Method for Filtering Dense Noise from Laser Scanning Data
原文传递
导出
摘要 为了有效剔除地面激光扫描数据中的大范围密集噪声,同时保留建筑物边缘特征,提出了一种基于距离变化并融合点云强度与密度信息的去噪方法。分析了噪声空间分布特征和点云强度分布,基于水平角和竖直角建立空间四叉树索引,在叶子节点内基于点前后间距特征实现局部点的快速聚类和孤立噪声剔除,在同类点集中基于不同类别强度点数的比值剔除大范围密集噪声。研究结果表明,所提算法能够有效剔除地面激光扫描数据中存在的大范围密集噪声,精度达90%以上。 To remove the large-scale and dense noise from the terrestrial laser scanning data and keep the edge features of buildings, a filtering method fusing intensity with density of points is proposed based on the varied distance of the points to the scanning stations. The spatial distribution of noise and the intensity distribution of point clouds are analyzed comprehensively. The spatial quadtree index is established based on the horizontal and vertical angles. The fast clustering of local points and the removal of isolated points are realized based on the account of the distance before and after points in the leaf nodes, and the large-scale and dense noise is filtered out according to the ratio among different types of intensity point numbers in the same point set. The research results show that the proposed method can be used to effectively filter out the large-scale and dense noise involved in the terrestrial laser scanning data with an accuracy of above 90%.
作者 陈世超 戴华阳 王成 习晓环 管力 Chen Shichao;Dai Huayang;Wang Cheng;Xi Xiaohuan;Guan Li(College of Geoscience and Surveying Engineering,China University of Mining & Technology (Beijing),Beijing 100083,China;Key Laboratory of Digital Ea rth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第6期206-213,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(41628101 41871264)
关键词 遥感 地面激光扫描数据 点云去噪 密集噪声 噪声空间分布 强度分布 remote sensing terrestrial laser scanning data denoising of point clouds dense noise spatial distribution of noise intensity distribution
  • 相关文献

参考文献9

二级参考文献99

共引文献206

同被引文献175

引证文献14

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部