期刊文献+

基于情境感知的饮食推荐方法研究

Research on Dietary Recommendation Method Based on Context-Aware
下载PDF
导出
摘要 基于情境感知的方法是实现饮食推荐的有效途径。以老人饮食推荐服务为应用背景,利用协同过滤的思想,对传统的协同过滤算法进行了改进,在其中引入了情境相似度和用户偏好度,结合基于SWRL规则推理的方法实现推荐。当两种推荐生成的结果集有冲突时,利用基于情境的推理优化方法来过滤推荐结果集,进而完成混合推荐。实验结果表明,该方法相比传统的基于用户的协同过滤推荐和基于规则推理的推荐能够向用户提供较高质量的饮食推荐服务。 The method which based on context-aware is an effective way to achieve dietary recommendation.Based on the application background of dietary recommendation for the elder,the traditional collaborative filtering algorithm is improved by using the idea of collaborative filtering,in which context similarity and user preference are introduced,and recommendation is realized by combining SWRL rule reasoning.When there is conflict between the two recommendation result sets,the contextbased reasoning optimization method is used to filter the recommendation result sets and then complete the hybrid recommendation.The experimental results show that the proposed method can provide users with higher quality dietary recommendation services than the traditional user-based collaborative filtering recommendation and rule-based reasoning recommendation.
作者 胡丹 谭钦红 刘灿 钟琳倩 Hu Dan;Tan Qinhong;Liu Can;Zhong Linqian(College ofCommunication and InformationEngineering,ChongqingUniversityofPosts andTelecommuni-cations,Chongqing400065,China;Chongqing Key Laboratory of Signal and Information Processing,Chongqing University of Postsand Tele-communications,Chongqing 400065,China)
出处 《信息通信》 2019年第3期60-63,共4页 Information & Communications
基金 信号与信息处理重庆市市级重点实验室建设项目(CSTC2009CA2003)
关键词 情境感知 协同过滤 规则推理 混合推荐 饮食服务 context-aware Collaborative Filtering(CF) Rule inference Hybrid recommendation Diet
  • 相关文献

参考文献6

二级参考文献96

  • 1修宇,王士同,吴锡生,胡德文.方向相似性聚类方法DSCM[J].计算机研究与发展,2006,43(8):1425-1431. 被引量:21
  • 2Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression models [J]. Journal of Approximate Reasoning, 2003, 32(2): 85-102
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York: Plenum, 1081
  • 4Bezdek J C, Hathaway R J, Sahin M J, et al. Convergence theory for fuzzy c-means: Counterexamples and repairs [J]. IEEE Trans on SMC, 1987, 17(5): 873-877
  • 5Zhang Y J, Liu Z Q. Self-splitting competitive learning: A new on-line clustering paradigm [J]. IEEE Trans on Neural Network, 2002, 13(2) : 369-380
  • 6Wu S H, Liew A W, Hong Y, et al. Cluster analysis of gene expression data based on self-splitting and merging competitive learning [J]. IEEE Trans on Information Technology in Biomedicine, 2004, 8 (1) : 5-15
  • 7Xu L, Krzyak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection [J]. IEEE Trans on Neural Network, 1993, 4(4): 636-649
  • 8Blake C L, Merz C J. UCI repository of machine learning databases [D]. Irvine, CA: University of California, Department of Information and Computer Science, 1998
  • 9Yeung K Y, Medvedovie M, Bumgarner R. Clustering gene expression data with repeated measurements [J]. Genome Biology, 2003, 4(5): R34
  • 10Chung F L, Wang S T, et al. Clustering analysis of gene expression data based on semi-supervised clustering algorithm [J]. Soft Computing, 2006, 1(11): 981-994

共引文献253

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部