摘要
Poisson-Dirichlet分布是定义在无穷维单纯形上的概率.它刻画了一个取值为离散概率的随机变量的分布.与Poisson-Dirichlet分布密切相关的随机测度包括GEM (Griffiths-Engen-McCloskey)分布、Dirichlet过程、两参数Dirichlet过程和两参数Poisson-Dirichlet分布等.构造与这些分布相应的测度值过程是近些年比较活跃的研究课题.本文介绍近年来这方面的发展状况,并给出一些待研究的问题.
The Poisson-Dirichlet distribution is a probability on the space of in?nite dimensional simplex.It is the distribution of a discrete-probability-valued random variable.The closely associated random measures include the GEM distribution,the Dirichlet process and their two-parameter generalizations.One of the active areas for research in modern probability is concerned with the construction of reversible measure-valued processes associated with these random measures.This article will survey recent development in this area and list a few interesting problems for further consideration.
出处
《中国科学:数学》
CSCD
北大核心
2019年第3期377-388,共12页
Scientia Sinica:Mathematica
基金
Natural Sciences and Engineering Research Council of Canada资助项目