期刊文献+

基于扩张变参数模型的风力机自适应故障估计

Adaptive fault estimation for wind turbines using augmented-state parameter-varying model
下载PDF
导出
摘要 风力发电系统是复杂的空气动力学系统,有效的故障估计是保证发电系统可靠运行的重要方法.本文基于风力机变参数模型,提出一种基于扩张变参数模型的风力机自适应故障估计方法.首先阐述了风力机健康和故障变参数模型,基于此构造故障扩张模型,并利用线性变换得分块矩阵可观测标准型来完成自适应极点配置,进一步分别在扩张系统为奇、偶阶次下给出观测器设计定理及收敛性证明,从而实现扩张自适应观测器设计.最后,在4.8 MW的风力机标准模型上考虑系统元部件和执行器故障的在线估计.仿真结果验证了本文方法的有效性和可靠性. As a wind turbine system is a complex aerodynamic system, an effective fault estimation technique is required for its reliable operation and power generation. In this paper, an adaptive fault estimation method is proposed for wind turbines based on parameter-varying model scheme. First, the healthy and faulty parameter-varying models are considered. Then, the augmented system is formulated and a block-matrix skill with observable canonical form is used to enable the pole placement for completing the adaptive observer design. Third, the theorems are presented, which state that the estimation errors of the observer are convergent under the odd and even orders of the system, respectively. Finally, the simulation experiments are carried out on the bench mark model of 4.8MW wind turbine, considering the online estimation of the component and actuator faults. The results show that the proposed method is effective and reliable.
作者 邵辉 聂卓赟 李平 SHAO Huiy;NIE Zhuo-yun;LI Ping(College of Information Science and Engineering, Huaqiao University, Xiamen Fujian 361021, China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第3期363-371,共9页 Control Theory & Applications
基金 国家自然科学基金项目(61573158 61603144) 国家留学基金委项目(201407540009) 福建省电机控制与系统优化调度工程技术研究中心资助~~
关键词 风力机 故障估计 变参数模型 扩张状态 自适应观测器 分块矩阵 可观测标准型 wind turbines fault estimation parameter-varying model augmented-state adaptive observer block-matrix observable canonical form
  • 相关文献

参考文献2

二级参考文献22

  • 1HE Q N, SHEN Y X, JI L Y. Fault tolerant control strategy for nonlin- ear system based on feedback control [C] //Proceedings of the Amer- ican Control Conference. Piscataway, NJ: Insitute of Electrical and Electronics Engineers Inc, 2013:4897 -4902.
  • 2KAMAL E, AITOUCHE A, GHORBANI R, et al. Robust fuzzy fault- tolerant control of wind energy conversion systems subject to sensor faults [J]. IEEE Transactions on Sustainable Energy, 2012, 3(2): 231 - 241.
  • 3ZHANG Ke. Fault diagnosis and fault-tolerant control based on s- liding mode observer control system [D]. Nanjing: Nanjing Universi- ty of Aeronautics and Astronautics, 2007.
  • 4HONG C M, CHENG F S, CHEN C H. Optimal control for variable- speed wind generation systems using general regression neural net- work [J]. International Journal of Electrical Power & Energy Sys- tems, 2014, 9(60): 14 - 23.
  • 5CHEN W, SAIF M. An Iterative Learning observer for fault detection and accommodation in nonlinear time-delay systems [J]. Internation- al Journal of Robust and Nonlinear Control, 2006, 16(1): 1 - 19.
  • 6MUNTEANU I, BRATCU A I, CUTULULIS N A, et al. Optimal Control of Wind Energy Systems: Towards a Global Approach [M]. London: Springer, 2008:28 - 135, 150 - 158.
  • 7NICHITA C, LUCA D, DAKYO B, et al. Large band simulation of the wind speed for real time wind turbine simulators [J]. IEEE Trans- actions on Energy Conversion, 2002, 17(4): 523 - 529.
  • 8YAN Bingyong. Research on several methods of fault diagnosis non- linear systems and their applications [D]. Shanghai: Shanghai Jiao Tong University, 2010.
  • 9朱大奇,孔敏.基于平衡学习的CMAC神经网络非线性滑模容错控制[J].控制理论与应用,2008,25(1):81-86. 被引量:8
  • 10彭滔,裴廷睿.一种实用的神经网络方法在液压泵故障诊断中的应用[J].湘潭大学自然科学学报,2009,31(1):148-151. 被引量:2

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部