期刊文献+

Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates 被引量:4

Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates
原文传递
导出
摘要 InGaAs/InP avalanche photodiodes typically work in the gated Geiger mode to achieve near-infrared singlephoton detection. By using ultrashort gates and combining with the robust spike-canceling technique that consists of the capacitance-balancing and low-pass filtering technique, we demonstrate an InGaAs/InP single-photon detector(SPD) with widely tunable repetition rates in this paper. The operation frequency could be tuned conveniently from 100 MHz to 1.25 GHz with the SPD's performance measured to maintain good performance, making it quite suitable for quantum key distribution, laser ranging, and optical time domain reflectometry. Furthermore,the SPD exhibited extremely low-noise characteristics. The detection efficiency of this SPD could reach 20% with the dark count rate of 2.5 × 10^(-6)∕gate and after-pulse probability of 4.1% at 1 GHz. InGaAs/InP avalanche photodiodes typically work in the gated Geiger mode to achieve near-infrared singlephoton detection. By using ultrashort gates and combining with the robust spike-canceling technique that consists of the capacitance-balancing and low-pass filtering technique, we demonstrate an InGaAs/InP single-photon detector(SPD) with widely tunable repetition rates in this paper. The operation frequency could be tuned conveniently from 100 MHz to 1.25 GHz with the SPD's performance measured to maintain good performance, making it quite suitable for quantum key distribution, laser ranging, and optical time domain reflectometry. Furthermore,the SPD exhibited extremely low-noise characteristics. The detection efficiency of this SPD could reach 20% with the dark count rate of 2.5 × 10^(-6)∕gate and after-pulse probability of 4.1% at 1 GHz.
出处 《Photonics Research》 SCIE EI CSCD 2019年第3期I0001-I0006,共6页 光子学研究(英文版)
基金 National Natural Science Foundation of China(NSFC)(11404212,11604209,61127014) National Key Scientific Instrument Project(2012YQ150092) Shanghai Science and Technology Foundation(16JC1400404) Hujiang Foundation of China(D15014)
  • 相关文献

同被引文献26

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部