期刊文献+

Ternary ReS_(2(1-x))Se_(2x) alloy saturable absorber for passively Q-switched and mode-locked erbium-doped all-fiber lasers 被引量:1

Ternary ReS_(2(1-x))Se_(2x) alloy saturable absorber for passively Q-switched and mode-locked erbium-doped all-fiber lasers
原文传递
导出
摘要 We report Q-switched and mode-locked erbium-doped all-fiber lasers using ternary ReS_(2(1-x))Se_(2x) as saturable absorbers(SAs). The modulation depth and saturable intensity of the film SA are 1.8% and 0.046 MW∕cm2.In Q-switched mechanism output, the pulse was centered at 1531.1 nm with maximum pulse energy and minimum pulse width of 28.29 nJ and 1.07 μs, respectively. In mode-locked operation, the pulse was centered at1561.15 nm with pulse width of 888 fs, repetition rate of 2.95 MHz, and maximum pulse energy of 0.275 nJ. To the best of our knowledge, this is the first report on the mode-locked Er^(3+)-doped fiber laser using ternary transition metal dichalcogenides. This work suggests prospective 2 D-material SAs can be widely used in versatile fields due to their attractive optoelectronic and tunable energy bandgap properties. We report Q-switched and mode-locked erbium-doped all-fiber lasers using ternary ReS_(2(1-x))Se_(2x) as saturable absorbers(SAs). The modulation depth and saturable intensity of the film SA are 1.8% and 0.046 MW∕cm2.In Q-switched mechanism output, the pulse was centered at 1531.1 nm with maximum pulse energy and minimum pulse width of 28.29 nJ and 1.07 μs, respectively. In mode-locked operation, the pulse was centered at1561.15 nm with pulse width of 888 fs, repetition rate of 2.95 MHz, and maximum pulse energy of 0.275 nJ. To the best of our knowledge, this is the first report on the mode-locked Er^(3+)-doped fiber laser using ternary transition metal dichalcogenides. This work suggests prospective 2 D-material SAs can be widely used in versatile fields due to their attractive optoelectronic and tunable energy bandgap properties.
出处 《Photonics Research》 SCIE EI CSCD 2019年第3期283-288,共6页 光子学研究(英文版)
基金 National Key R&D Program of China(2018YFB1107200) National Natural Science Foundation of China(NSFC)(61675158,21673058) Chinese Academy of Sciences Key Project(CAS Key Project)(QYZDBSSW-SYS031) Chinese Academy of Sciences(CAS)(XDB30000000)
  • 相关文献

参考文献2

共引文献20

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部