期刊文献+

Rotational motions of the Ms7.0 Jiuzhaigou earthquake with ground tilt data 被引量:2

Rotational motions of the Ms7.0 Jiuzhaigou earthquake with ground tilt data
原文传递
导出
摘要 Observation and research of rotational motions induced by earthquake has been ignored in the past decades due to the lack of understanding of important ground rotational motions and practical difficulty involved in directly measuring the rotational components. Currently, there is a paucity of methods to directly measure rotational motions in China. The present study attempts to discuss the possibility of obtaining seismic rotation from ground tilt data. The rotational motions generated by shear dislocation source are derived based on the displacement formula of elastic wavefields in the homogenous space. The characteristics of the three components of translational and rotational motions in near, intermediate, and far fields are compared and analyzed. Based on the corresponding relationship between the rotation and ground tilt on free surface boundary, a method to indirectly construct the rotational motions in the layered half space is obtained. Finally, the theoretical rotational motions generated by the Ms7.0 earthquake in Jiuzhaigou, Sichuan Province, on August 8, 2017 are calculated. The results indicate that the rotational motions generated by the Jiuzhaigou earthquake are concentrated in the vicinity of the epicenter(approximately150 km) and mainly distributed in the area perpendicular to the fault strike. The existence of free surface boundary attenuates the total energy of the rotational field and especially in the direction of the dominant energy. The ground tilt data is compared with rotational motions in the layered half space, and the results indicate that theoretical rotations and actual ground tilt data are essentially consistent, especially in the far field region. Thus, it is possible to obtain horizontal components of rotation from ground tilt data, and this provides more information for a complete description of the motion characteristics of an underground medium. Observation and research of rotational motions induced by earthquake has been ignored in the past decades due to the lack of understanding of important ground rotational motions and practical difficulty involved in directly measuring the rotational components. Currently, there is a paucity of methods to directly measure rotational motions in China. The present study attempts to discuss the possibility of obtaining seismic rotation from ground tilt data. The rotational motions generated by shear dislocation source are derived based on the displacement formula of elastic wavefields in the homogenous space. The characteristics of the three components of translational and rotational motions in near, intermediate, and far fields are compared and analyzed. Based on the corresponding relationship between the rotation and ground tilt on free surface boundary, a method to indirectly construct the rotational motions in the layered half space is obtained. Finally, the theoretical rotational motions generated by the Ms7.0 earthquake in Jiuzhaigou, Sichuan Province, on August 8, 2017 are calculated. The results indicate that the rotational motions generated by the Jiuzhaigou earthquake are concentrated in the vicinity of the epicenter(approximately150 km) and mainly distributed in the area perpendicular to the fault strike. The existence of free surface boundary attenuates the total energy of the rotational field and especially in the direction of the dominant energy. The ground tilt data is compared with rotational motions in the layered half space, and the results indicate that theoretical rotations and actual ground tilt data are essentially consistent, especially in the far field region. Thus, it is possible to obtain horizontal components of rotation from ground tilt data, and this provides more information for a complete description of the motion characteristics of an underground medium.
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第5期832-842,共11页 中国科学(地球科学英文版)
基金 supported by the National Key Research and Development Program of China(Grant No.2018YFC1503405) Spark Programs of Earthquake Sciences(Grant No.XH17060Y)
关键词 ROTATIONAL MOTIONS Layered half space Jiuzhaigou EARTHQUAKE Ground TILT STRIKE SLIP fault Rotational motions Layered half space Jiuzhaigou earthquake Ground tilt Strike slip fault
  • 相关文献

参考文献5

二级参考文献14

共引文献59

同被引文献17

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部