期刊文献+

Time-scale separation and stochasticity conspire to impact phenotypic dynamics in the canonical and inverted Bacillus subtilis core genetic regulation circuits

原文传递
导出
摘要 Backgrounds In this work, we study two seemingly unrelated aspects of core genetic nonlinear dynamical control of the competence phenotype in Bacillus subtilis, a common Gram-positive bacterium living in the soil. Methods: We focus on hitherto unchartered aspects of the dynamics by exploring the effect of time-scale separation between transcription and translation and, as well, the effect of intrinsic molecular stochasticity. We consider these aspects of regulatory control as two possible evolutionary handles. Results: Hence, using theory and computations, we study how the onset of oscillations breaks the excitability-based competence phenotype in two topologically close evolutionary-competing circuits: the canonical "wild-type" regulation circuit selected by Evolution and the corresponding indirect-feedback inverted circuit that failed to be selected by Evolution, as was shown elsewhere, due to dynamical reasons. Conclusions^ Relying on in-silico perturbation of the living state, we show that the canonical core genetic regulation of excitability-based competence is more robust against switching to phenotype-breaking oscillations than the inverted feedback organism. We show how this is due to time-scale separation and stochasticity.
出处 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2019年第1期54-68,共15页 中国电气与电子工程前沿(英文版)
分类号 Q [生物学]
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部