期刊文献+

靶准直器悬臂调整机构装配误差分析

Error Analysis of Cantilever Adjustment Mechanism of Target Collimator Sensor
下载PDF
导出
摘要 靶准直器(TAS)是惯性约束核聚变(ICF)靶场中的重要部件,其在靶室中的位姿是保证靶定位瞄准精度的主要因素之一。为了实现微米级的定位瞄准精度,需要利用调整机构对靶准直器位姿进行调整。为了实现高精度定位,有必要进行误差分析。本文采取直接线性化(DLM)方法对靶准直器调整机构末端的装配偏差进行研究。通过DLM分析了TAS的各个零件的形位公差敏感度系数,计算出了末端的装配偏差;同时分析出了对末端装配偏差造成较大影响的相关参数,并通过实验验证。对装配偏差影响较大的相关参数的研究,有助于后续TAS做出了合理的装配调整,减少装配偏差。 The Target Collimator Sensor(TAS) is an important component in the inertial confinement nuclear fusion (ICF) range, and its position in the target chamber is one of the main factors to ensure the accuracy of target positioning. In order to achieve micron-level positioning accuracy, it is necessary to adjust the position of the target collimator by using an adjustment mechanism. In order to achieve high-precision positioning, it is necessary to perform error analysis. In this paper, the direct linearization ( DLM) method is used to study the assembly deviation of the end of the target collimator adjustment mechanism. The geometrical tolerance sensitivity coefficient of each part of TAS was analyzed by DLM, and the assembly deviation of the end was calculated. At the same time, the relevant parameters which greatly affected the end assembly deviation were analyzed and verified by experiments. The study of relevant parameters that have a great influence on the assembly deviation helps the subsequent TAS to make reasonable assembly adjustments and reduce assembly deviation.
作者 宋公军 沈林勇 章亚男 钱晋武 Song Gongjun;Shen Linyong;Zhang Yanan;Qian Jinwu
出处 《计量与测试技术》 2019年第3期62-67,共6页 Metrology & Measurement Technique
关键词 靶准直器 调整机构 装配偏差 敏感度系数 直接线性化方法 target collimator adjustment mechanism assembly deviation sensitivity coefficient direct linearizationmethod
  • 相关文献

参考文献3

二级参考文献86

  • 1於海武,徐美健,段文涛,隋展.惯性聚变能源激光驱动器研究进展[J].激光与光电子学进展,2006,43(9):55-62. 被引量:9
  • 2M J Edwards, P K Patel, J D Lindl, et al.. Progress towards ignition on the National Ignition Facility [J]. Phys Plasmas, 2013, 20(7): 070501.
  • 3J L Miquel, C Lion, P Vivini. The LMJ program: overview and status of LMJ & PETAL Projects [C]. CLEO, 2013.
  • 4Gangyao Xiao, Dianyuan Fan, Shiji Wang, et al.. SG-II solid-state laser ICF system [C]. SPIE, 1999, 3492: 890-895.
  • 5Wanguo Zheng, Xiaomin Zhang, Xiaofeng Wei, et al.. Status of the SG- III solid- state laser facility [J]. J Physics: Conference Series, 2008, 112(3): 032009.
  • 6Yanqi Gao, Weixin Ma, Baoqiang Zhu, et al.. Status of the SG- II- UP laser facility [C]. IEEE Photonics Conference (IPS), 2013: 73-74.
  • 7E I Moses, the NIC Collaborators. The national ignition campaign: status and progress [J]. Nuclear Fusion, 2013, 53(10): 104020.
  • 8E Moses, T D Rubia, E Storm, et al.. A Sustainable Nuclear Fuel Cycle Based on Laser Inertial Fusion Energy [R]. 2009, LLNL-CONF-413798.
  • 9M Dunne. A high-power laser fusion facility for Europe [J]. Nat Phys, 2006, 2(1): 2-5.
  • 10Y Kozaki. Power plant concepts and chamber issues for fast ignition direct- drive targets [J]. Fusion Science and Technology, 2006, 49(3): 542-552.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部