期刊文献+

心电动力学信号数据特征提取与模式识别的研究进展 被引量:8

Research progress of the data feature extraction and pattern recognition of cardiodynamicsgram signal
下载PDF
导出
摘要 现代控制理论和计算机技术的进步,为深入研究心电信号内在动态病理特征创造了良好条件,并推动了相关学者在基于心电信号转化数据的神经网络模型构建、心电信号异质度特征的量化指标提取、心脏疾病辅助诊断等方面的早期探索。本文综述了心电动力学信号数据特征的研究现状,并介绍了心电动力学信号数据特征的提取方法、模式识别及其在心肌缺血辅助诊断、心肌缺血引发心脏疾病早期筛查和疗效评估等方面的应用。 With the development of modern control theory and computer technology,good conditions have been prepared for further research on the dynamic pathological features inherently in ECG signals.It also promotes early studies on neural network modeling of ECG signals,extraction of quantitative indicators characterizing the heterogeneity of ECG signals,auxiliary diagnosis of cardiac diseases,etc.This paper reviews literatures of the previous research on the data feature of cardiodynamicsgram signals,and introduces its extraction method,pattern recognition and its application in the auxiliary diagnosis of myocardial ischemia,early screening of cardiac diseases resulting from myocardial ischemia,evaluation of curative effect and so on.
作者 易力 李祥 何俊德 李伟 郑大 Yi Li;Li Xiang;He Jun-de;Li Wei;Zheng Da(Department of Orthopedics,Dalian Friendship Hospital,Dalian Liaoning 116100;Department of Cardiology,Liupanshui People's Hospital,Liupanshui Guizhou 553001;Intellectual Property Department,Shanghai Turing Medical Technology Co.,Ltd.,Shanghai 200240,China)
出处 《实用心电学杂志》 2019年第2期136-140,共5页 Journal of Practical Electrocardiology
基金 贵州省卫生计生委科学技术基金项目资助(gzwjkj 2018 1 087)
关键词 心电动力学信号 数据特征 识别算法 心肌缺血 辅助诊断 cardiodynamicsgram signal data feature recognition algorithm myocardial ischemia auxiliary diagnosis
  • 相关文献

参考文献4

二级参考文献100

  • 1Antunes C M, Oliveira A L. Temporal data mining: an overview. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA: ACM, 2001. 1-13
  • 2Han J W, Kamber M. Data Mining: Concepts and Techniques (Second Edition). Boston: Morgan Kaufmann, 2006
  • 3Ljung L. System Identification: Theory for the User (Second Edition). New Jersey: Prentice-Hall, 1999
  • 4Gevers M. A personal view of the development of system identification. IEEE Control Systems Magazine, 2006, 26(6): 93-105
  • 5Narendra K S, Parthasavathy K. Identification and control of dynamic systems using neural networks. IEEE Transactions on Neural Networks, 1990, 1(1): 4-27
  • 6Sanner R M, Slotine J J E. Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks, 1992, 3(6): 837-863
  • 7Sadegh N. A perceptron network for functional identification and control of nonlinear systems. IEEE Transactions on Neural Networks, 1993, 4(6): 982-988
  • 8Kosmatopoulos E B, Polycarpou M M, Christodoulou M A, Ioannou P A. High-order neural network structures for identification of dynamical systems. IEEE Transactions on Neural Networks, 1995, 6(2): 422-431
  • 9Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 1996, 41(3): 447-451
  • 10Jagannathan S, Lewis F L. Discrete-time neural net controller for a class of nonlineardynamical systems. IEEE Transactions on Automatic Control, 1996, 41(11): 1693-1699

共引文献22

同被引文献48

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部